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Neuronal activity in sensory cortex predicts the
specificity of learning in mice
Katherine C. Wood 1, Christopher F. Angeloni1,2, Karmi Oxman1, Claudia Clopath 3 &

Maria N. Geffen 1,2,4✉

Learning to avoid dangerous signals while preserving normal responses to safe stimuli is

essential for everyday behavior and survival. Following identical experiences, subjects exhibit

fear specificity ranging from high (specializing fear to only the dangerous stimulus) to low

(generalizing fear to safe stimuli), yet the neuronal basis of fear specificity remains unknown.

Here, we identified the neuronal code that underlies inter-subject variability in fear specificity

using longitudinal imaging of neuronal activity before and after differential fear conditioning in

the auditory cortex of mice. Neuronal activity prior to, but not after learning predicted the

level of specificity following fear conditioning across subjects. Stimulus representation in

auditory cortex was reorganized following conditioning. However, the reorganized neuronal

activity did not relate to the specificity of learning. These results present a novel neuronal

code that determines individual patterns in learning.
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Learning allows our brain to adjust sensory representations
based on environmental demands. Fear conditioning, in
which a neutral stimulus is paired with an aversive stimulus,

is a robust form of associative learning: exposure to just a few
stimuli can lead to a fear response that lasts over the subject’s
lifetime1,2. However, the same fear conditioning paradigm elicits
different levels of learning specificity across subjects3–6. In
pathological cases, the generalization of the fear response to sti-
muli in non-threatening situations can lead to conditions such as
post-traumatic stress disorder (PTSD)7,8 and anxiety9. Therefore,
determining the neuronal basis for learning specificity following
fear conditioning is important and can lead to improved under-
standing of the neuropathology of these disorders. Whereas much
is known about how fear is associated with the paired stimulus,
the neuronal mechanisms that determine the level of specificity of
fear learning remain poorly understood. Our first goal was to
determine the neuronal basis for the differential fear learning
specificity across subjects.

Multiple studies suggest the auditory cortex (AC) is involved in
fear learning. During differential fear conditioning (DFC), inac-
tivation of AC chemically10, or with optogenetics11, as well as
partial suppression of inhibition in AC12 led to decreased learning
specificity using either pure tones or complex stimuli, such as FM
sweeps or vocalizations3,11–13. These observations suggest that
AC may determine the level of learning specificity. Therefore, we
tested whether neuronal codes in AC prior to conditioning can
predict specificity of fear learning.

The role of AC following fear conditioning is more con-
troversial. Changes in stimulus representation in AC following
association learning have been proposed to represent multiple
different features of the fear response1,13–18. However, inactiva-
tion of the auditory cortex did not affect fear memory retrieval of
pure tones3,11. If AC were involved in fear memory retrieval, we
would expect the changes in sound representation to reflect the
level of learning specificity across subjects. Therefore, our second
goal was to test the role of changes in auditory cortex in shaping
fear learning specificity across subjects.

To address these goals, we imaged the activity of neuronal
ensembles in layers 2 and 3 of AC over weeks, before and after
differential fear conditioning with pure tones. First, we established
the neuronal basis for differential learning specificity across sub-
jects by finding that neuronal activity in AC prior to fear con-
ditioning predicted the level of learning specificity. Second, we
found that the changes in stimulus representation in AC following
fear conditioning were not correlated with the level of learning
specificity across subjects, suggesting that the role of AC in fear
learning is restricted to the consolidation period and changes in
AC do not represent fear memory. These findings refine our
understanding of the neuronal code for variability in fear learning
across subjects and reconcile seemingly conflicting previous results
on the function of the auditory cortex in fear learning.

Results
Learning specificity varies amongst conditioned mice. To
establish the relationship between sound-evoked activity in AC
and differential fear conditioning, we recorded simultaneous
neuronal activity from hundreds of neurons in AC. We tracked
the same neurons before and after DFC, using two-photon ima-
ging of a fluorescent calcium probe (GCaMP619, Supplementary
Fig. 1, 2). Longitudinal imaging of neuronal activity in large
ensembles of neurons in layers 2 and 3 of AC before and after
conditioning (Fig. 1a) allowed us to compare the representation
of the CS stimuli before and after learning.

We conditioned mice by exposure to 10 repeats of an
alternating sequence of two tones, one of which co-terminated

with a foot-shock (CS+, 15 kHz), and one which did not (CS−,
11.4 kHz). Pseudo-conditioned mice were presented with the
same stimuli, but the foot-shock occurred during periods of
silence between the stimuli (Fig. 1b). Following conditioning, we
measured fear-memory retrieval by presenting the same auditory
stimuli to the mice in a different context and measuring the
percentage of time the mice froze during stimulus presentation
and at baseline (Fig. 1c). Memory retrieval was tested after each
imaging session. To test whether levels of freezing changed over
retrieval sessions we fit a linear mixed-effects model to predict
how freezing was affected by the retrieval session time and
stimulus type. We found there was no effect of retrieval session
on freezing (Fig. 1d, Supplementary Table 1, t(164)= 0.90,
p= 0.372) and no difference in the effect between retrieval
session and stimulus type (t(164)=−1.21, p= 0.227). Similarly,
freezing in pseudo-conditioned mice was consistent over the 4
retrieval sessions (Fig. 1e, Supplementary Table 1, no effect of
retrieval session or interaction (retrieval session by stimulus type),
p > 0.05). Since there was no change in freezing over time, we do
not specifically consider results with respect to the second DFC
session (Fig. 1a, day 12). Henceforth we refer to DFC as the first
DFC session. Conditioned mice that did not freeze to CS+
or CS− differently from baseline were excluded from subsequent
analysis (5/19 mice excluded, Supplementary Fig. 3a, two-way
ANOVA, p > 0.05, see “Methods”).

Learning specificity was defined as the difference between
freezing to CS+ and CS− during memory retrieval sessions (see
“Methods”, Eq. (1))3. We used two pure-tone CS stimuli which
have been shown to engage AC in both mouse3,12 and human
DFC20. The pure tones were close together in frequency space
(0.40 octaves apart) in order to drive a range of learning
specificities in conditioned mice that is not achievable at greater
frequency separations3. Indeed, we observed that conditioned
mice displayed a larger range of learning specificity (range: −16.9
to 55.6%) compared with pseudo-conditioned mice (−4.2 to
7.6%). This was reflected in a significantly larger standard
deviation of learning specificity in conditioned mice (σ= 20.3%)
than in pseudo-conditioned mice (Fig. 1f, σ= 3.3%, F-test, F(13,
8)= 36.80, p < 0.001) in the first retrieval session after DFC. We
also observed a significantly higher learning specificity (mean:
15.8%) in conditioned mice than pseudo-conditioned mice (mean:
1.0%, t-test, t(21)= 2.15, p= 0.043) in the retrieval session after
DFC. To test whether learning specificity was consistent over
retrieval sessions, we fit a linear mixed-effects model to predict
how learning specificity was affected by retrieval session and
conditioning type. We found no effect of retrieval session
on learning specificity for conditioned mice (Supplementary
Fig. 3b, c, Supplementary Table 1, t(88)= 0.23, p= 0.817) nor any
interaction between session and conditioning type (t(88)=−0.01,
p= 0.995). Thus, we found that conditioned mice exhibited a
range of learning specificity, with some generalizing their fear
across the CS stimuli and others specializing their fear responses
to CS+. On average, the learning specificity of mice was stable
over the course of the experiment.

Neuronal responses in AC pre-DFC predict specificity of fear
learning. We used two-photon imaging to record calcium activity
from neurons in auditory cortex in head-fixed mice (Fig. 2a). We
presented 100-ms tone pips (frequency range: 5–32 kHz, includ-
ing CS+ and CS− frequencies) to obtain frequency response
functions from each neuron. We hypothesized that the activity in
auditory cortex would predict learning specificity across indivi-
dual mice. Thus, we tested whether neuronal discrimination of
CS+ and CS− in AC pre-DFC predicted learning specificity
following DFC. To assess how well single neurons could
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discriminate between the two conditioned tones, we computed
the Z-score difference (Zdiff) of responses to CS+ and CS− for
responsive neurons (see “Methods”, Eq. (2)). In an example
neuron (Fig. 2b), the distributions of single-trial response mag-
nitudes to CS+ and CS− demonstrate a separation resulting in a
significant Zdiff score of 2.01. The Zdiff score of responsive neu-
rons was considered significant if the actual score was greater
than the 95th percentile of the bootstrapped Zdiff scores (see
“Methods”). Figure 2c shows the distribution of Zdiff scores for all
responsive units from conditioned mice 24 h pre-DFC.

To test whether neuronal discrimination pre-DFC could
predict subsequent learning specificity, we averaged the Zdiff
scores of neurons in each recording session of each mouse and
compared it with learning specificity 24 h post-DFC. Since
different numbers of neurons were recorded from each mouse,
we resampled (100x with replacement) the lowest number of
neurons recorded from across the mice. We found that the mean
Zdiff scores averaged across the pre-DFC imaging sessions
predicted learning specificity 24 h post-DFC (Fig. 2d, Spearman’s
rank correlation, r(12)= 0.81, 95% confidence intervals (CI)
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Fig. 1 Experimental timeline and differential fear conditioning (DFC) paradigm. a Experimental timeline: Mice were imaged for 4 sessions (48 h apart)
before DFC to establish baseline responses to tone pip stimuli under the two-photon. Prior to DFC, mice were habituated to the fear conditioning chamber.
Mice were subjected to DFC (19 mice) or pseudo-conditioning (9 mice) on Days 8 and 12. After DFC-1 (day 8), fear retrieval testing was performed after
each imaging session. b Mice were habituated to the conditioning chamber (context A) for 3 days prior to conditioning and on the final day, the stimuli
were presented without foot-shock. During conditioning, a foot-shock (1 s, 0.7 mA) was paired with the CS+ (15 kHz, 30 s pulsed at 1 Hz). The CS−
(11.4 kHz, 30 s pulsed at 1 Hz) was presented alternately with the CS+ (30–180 s apart, 10 repeats) and not paired with a foot-shock. During pseudo-
conditioning, 10 foot-shocks were presented randomly between the CS stimuli. During retrieval testing (context B), the same CS+ and CS− stimuli were
presented alternately (30–180 s apart, 4 repeats). Motion of the mouse was recorded and the percentage freezing during each stimulus was measured
offline. c Mean (±sem) percentage of time frozen during tone presentation for CS+ (pink), CS− (blue), and baseline (gray) for each mouse in retrieval
session 1 (day 9). Gray lines indicate freezing for each mouse. N= 14 conditioned mice, N= 9 pseudo-conditioned mice. Statistics: Two-way ANOVA,
Tukey–Kramer post hoc p < 0.01, Supplementary Table 1. d Mean (±sem) freezing to baseline, CS−, and CS+ for each conditioned mouse (N= 14) in each
retrieval session. Gray lines show each mouse. e Same as (d) for pseudo-conditioned mice (N= 9). f Mean (±sem) learning specificity of conditioned
(N= 14) and pseudo-conditioned (N= 9) mice for retrieval session 1. Circles show individual mice. Statistics: two-tailed, two-sample t-test, t(21)= 2.15,
p= 0.043. †p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, n.s.p > 0.05. Source data are provided as a Source data file.
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[0.60, 0.93], p= 0.007). Using only the imaging session preceding
DFC, the mean Zdiff did not correlate with learning specificity
24 h post-DFC (Fig. 2e, r(12)= 0.48, 95% CI [0.04, 0.78],
p= 0.103). However, the two correlations were not significantly
different from one another (bootstrap comparison, see “Meth-
ods”: r-difference= 0.33, 95% CI [−0.08, 0.88], p= 0.128,
N= 14). In summary, this suggests that the neuronal discrimin-
ability in AC of individual mice pre-DFC predicts learning
specificity 24 h post-DFC.

It is possible that the Zdiff score results from some underlying
distributions of response magnitudes; for example, the magnitude
of response to CS+ could be driving the prediction phenomenon.
Thus, we explored whether magnitude of CS+ or CS− responses
related to learning specificity. We compared the mean response
magnitudes to each CS over the 4 pre-DFC imaging sessions with

learning specificity 24 h post-DFC and found that they were not
correlated (Spearman’s rank correlation, p < 0.05, Supplementary
Fig. 4). This suggests that it is not merely the magnitude of
responses to CS+ or CS−, but truly the discriminability of the
responses that is underlying the prediction of learning specificity.

We next tested the temporal window for the prediction of
learning specificity. If changes in sound-evoked responses in AC
following DFC reflect memory formation or the strength of
learning, as previously suggested14,16, we would expect a stronger
relationship between neuronal discrimination and learning
specificity after DFC than before. To test this, we compared the
correlations between mean Zdiff across equal numbers of imaging
sessions before and after DFC (3 imaging sessions preceding
retrieval sessions 1, and 4) and learning specificity in retrieval
sessions 1 and 4, respectively. We found that the mean Zdiff score

4321
Imaging session

5 6 7 8

retrieval session
1 2 3 4DFC

a b c

-1 0 1 2 3 4
Time (s)

-0.5

0

0.5

1

1.5

2

2.5

M
ea

n 
re

sp
on

se
 (Δ

F/
F s

td
)

CS+
CS-

-1 0 1 2 3
Mean response

(ΔF/Fstd)

0
1
2
3
4
5

# 
re

sp
on

se
s

Zdiff = 2.01

ed

16X

Freq.
(kHz)

32

5
100 ms 4 s

Auditory stimuli (70 dB SPL)

20 s...

head-
fixed

4321
Imaging session

5 6 7 8

retrieval session
1 2 3 4DFC

0.2 0.3 0.4
Mean Zdiff

-20

0

20

40

60

Le
ar

ni
ng

 s
pe

ci
fic

ity
 (%

)

r = .81**
0.2 0.3 0.4 0.5

Mean Zdiff

-20

0

20

40

60

Le
ar

ni
ng

 s
pe

ci
fic

ity
 (%

)

r = .48n.s.
r = 0.66*

1 1 4 4
Retrieval session

-1

0

1

C
or

re
la

tio
n 

(r )
r = 0.54†

r = 0.64*
r = 0.25n.s.

2:4
6:8
2:4
5:7

Imaging 
sessions

4321
Imaging session

5 6 7 8

retrieval session
1 2 3 4DFC

N = 1

sig. Zdiff
n.s. Zdiff

N = 14

0 1 2
Zdiff

0

40

80

120

# 
ne

ur
on

s

0 1 2
Zdiff

0

4

8

12

# 
ne

ur
on

s

f

Fig. 2 Mean neuronal discriminability pre-DFC predicts learning specificity. a Imaging setup: Mice were head-fixed under the two-photon microscope,
fluorescence of calcium indicator (GCaMP6s/m) was measured at ~30 Hz, regions of interest and mean fluorescence over time were extracted using open
software59. Schematic showing auditory stimuli, comprised of pure-tone pips (100ms, 70 dB SPL, 5–32 kHz) presented at 0.24 Hz. b Response
(mean ± sem, 25 repeats) to the presentation (black bar) of CS+ (magenta) and CS− (cyan) of an example neuron. Inset shows distributions of the single-
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pre-DFC predicted learning specificity from retrieval session 1
(Fig. 2f blue dots, r(12)= 0.66, 95% CI [0.39, 0.90], p= 0.031),
whereas the mean Zdiff score post-DFC did not predict learning
specificity in retrieval session 4 (Fig. 2f green dots, r(12)= 0.25,
95% CI [−0.26, 0.70], p= 0.401). However, these two correlations
were not significantly different (bootstrap comparison: r-
difference= 0.41, 95% CI [−0.09, 0.95], p= 0.124). This change
in prediction could result from a rearrangement of learning
specificity over time or a rearrangement of Zdiff scores over time.
We reasoned that if learning specificity was rearranged then the
neural discriminability pre-DFC ought not to correlate with the
learning specificity in retrieval session 4 (Fig. 2f purple dots).
However, we found that neural discriminability pre-DFC
predicted learning specificity in retrieval session 4 (r(12)= 0.64,
95% CI [−0.17, 0.84], p= 0.022), suggesting a rearrangement of
Zdiff scores. Further supporting a rearrangement of Zdiff scores,
neuronal discriminability post-DFC did not correlate with
learning specificity in retrieval session 1 (Fig. 2f orange dots,
r(12)= 0.54, 95% CI [−0.04, 0.81], p= 0.066).

To verify that the results were robust to variability in frequency
tuning distributions and location of the imaging window along
the anterior-posterior axis (Supplementary Figs. 1 and 2) between
mice, we investigated the relationship between Zdiff and these
parameters. If neuronal discriminability is affected by imaging
location then we would expect a significant correlation between
the location of the imaging field of view on the anterior-posterior
axis and Zdiff, we did not find a significant correlation between
these two measures (Supplementary Fig. 5a, Spearman’s rank
correlation, p > 0.05) nor between the percentage of neurons with
significant Zdiff and imaging location (Supplementary Fig. 5b).
The best frequency distributions of neurons in the imaging
window could affect the mean Zdiff of neurons of each mouse. If
so, we would expect higher Zdiff scores and more neurons with
significant Zdiff scores for neurons tuned around the CS+ and
CS−. However, we found no relationship between mean Zdiff
score and mean best frequency in the imaging window
(Supplementary Fig. 5c, Spearman’s rank correlation, p > 0.05)
nor between the percentage of significant Zdiff scores and mean
best frequency (Supplementary Fig. 5d). Not surprisingly, the

percentage of significant Zdiff scores was correlated with learning
specificity (Spearman’s rank correlation, r= 0.72, p= 0.011)
suggesting that the best discriminating mice also had more
neurons that discriminated between CS+ and CS− (Supplemen-
tary Fig. 5e). Whereas there was no relationship between mean
Zdiff and mean best frequency of neurons in the imaging window
across mice, we did find that neurons with best frequency at CS+
or CS− had higher Zdiff scores than neurons tuned to other
frequencies (Supplementary Fig. 5f, Supplementary Table 1). This
suggests that mice with more neurons with best frequencies at CS
+ and CS− might have higher learning specificity. However,
there was no relationship between the percentage of neurons in
the imaging window with best frequency at CS+ and CS− across
the pre-DFC imaging sessions and learning specificity (Spear-
man’s rank correlation, r(12)= 0.46, 95% CI [−0.06, 0.71],
p= 0.127).

In summary, individual neuronal discriminability in AC pre-
DFC predicted learning specificity 24 h after DFC. Post-DFC,
neuronal activity no longer predicted learning specificity. There-
fore, the role of auditory cortex in DFC is restricted, temporally.
To further investigate the relationship between neuronal and
behavioral discriminability, we examined whether neuronal
population discriminability could predict learning specificity.

Population neuronal activity in AC predicts specificity of
learning. For many brain regions and tasks, activity of multiple
neurons can provide more information in combination than
averaged activity of individual neurons21–23. Using machine
learning, we investigated whether populations of neurons pre-
dicted learning specificity better than the average Zdiff scores. We
trained a Support Vector Machine (SVM) to discriminate
between presentation of CS+ and CS− using population
responses to the two stimuli—again we resampled (100x with
replacement) the lowest number of neurons recorded from across
the mice. Mean SVM performance across imaging sessions prior
to DFC correlated with learning specificity 24 h post-DFC
(Fig. 3a, r(12)= 0.77, 95% CI [0.53, 0.89], p= 0.001). Using
only the imaging session preceding DFC, SVM performance 24 h
pre-DFC did not correlate with learning specificity 24 h post-DFC
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Fig. 3 Neuronal population discrimination between CS+ and CS− pre-DFC predicts learning specificity. a Mean (±sem) SVM performance across pre-
DFC sessions predicts learning specificity 24 h post-DFC (retrieval session 1). Statistics: two-tailed Spearman’s rank correlation, r(12) = 0.77, p= 0.001. b
Mean (±sd) SVM performance 24 h pre-DFC does not predict learning specificity 24 h post-DFC. Statistics: two-tailed Spearman’s rank correlation, r(12) =
0.35, p= 0.247. c Mean (±sem) SVM performance pre-DFC correlates with the mean (±sem) Zdiff score pre-DFC. Fill color indicates learning specificity
from retrieval session 1. Statistics: two-tailed Spearman’s rank correlation, r(12)= 0.93, p = <0.0001. d Correlation (mean r ± 95% CI) between SVM
performance averaged across 3 imaging sessions preceding retrieval sessions 1 (blue), and 4 (orange). Dots represent individual bootstrapped correlation
values (n= 1000). Statistics: two-tailed Spearman’s rank correlation: [Imaging session 2:4, retrieval session 1] r(12)= 0.65, p= 0.008; [6:8, 1]
r(12)= 0.42, p= 0.155; [2:4, 4)] r(12)= 0.50, p= 0.073; [5:7, 4] r(12)= 0.34, p= 0.252. Black lines in a, b, and c show the best linear fit. †p < 0.1,
*p < 0.05, **p < 0.01, ***p < 0.001, n.s.p > 0.10. Source data are provided as a Source data file.
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(Fig. 3b, r(12)= 0.35, 95% CI [−0.20, 0.64], p= 0.247). However,
the two correlations were not significantly different (bootstrap
comparison (see “Methods”), r-difference=−0.43, 95% CI
[−0.86, 0.00], p= 0.056). The Zdiff scores and the SVM perfor-
mance of the same neurons were strongly correlated (Fig. 3c,
r(12)= 0.93, 95% CI [0.89, 0.97], p < 0.001), suggesting that the
two different discriminability methods used similar underlying
features to discriminate the stimuli. This was also reflected in the
fact that the correlations between the two discriminability mea-
sures across pre-DFC imaging sessions and learning specificity
were not statistically different (bootstrap comparison, r-differ-
ence= 0.01, 95% CI [−0.09, 0.00], p= 0.780). Since the SVM
should give greater weight to more informative neurons, we tested
whether there would be a stronger correlation between the sig-
nificant Zdiff scores and SVM performance. We found that the
correlations were not significantly different (bootstrap compar-
ison, r-difference=−0.044, 95% CI [−0.28, 0.14], p= 0.562).
Thus, population responses averaged across pre-DFC imaging
sessions predicted subsequent learning specificity likely through
similar mechanisms to the mean Zdiff.

We next tested whether predictability of learning specificity
persisted after DFC by comparing the mean SVM performance
across 3 imaging sessions with retrieval sessions 1 and 4 (Fig. 3d).
The mean SVM performance pre-DFC predicted learning
specificity in retrieval session 1 (Fig. 3d blue dots, r(12)= 0.65,
95% CI [0.36, 0.86], p= 0.008) whereas the mean SVM
performance post-DFC did not predict learning specificity in
retrieval session 4 (Fig. 3d green dots, r(12)= 0.34, 95% CI
[−0.18, 0.76], p= 0.252). However, these two correlations were
not significantly different (bootstrap comparison, r-difference=
0.31, 95% CI [−0.24, 0.93], p= 0.294). Again, we tested whether
this change in prediction resulted from a rearrangement of
learning specificity over time or a rearrangement of neural
discrimination over time. Whereas we found the same pattern of
results as with Zdiff (Fig. 2f), we did not find a significant
correlation between neural discriminability pre-DFC and learning
specificity in retrieval session 4 (Fig. 3d purple dots, r(12)= 0.50,
95% CI [−0.01, 0.85], p= 0.073). Neuronal discriminability post-
DFC did not correlate with learning specificity in retrieval session
1 (Fig. 3d orange dots, r(12)= 0.42, 95% CI [−0.08, 0.66],
p= 0.155).

Combined with similar results from the mean Zdiff scores
(Fig. 2f), these results support the interpretation that neuronal
discriminability predicts learning specificity before, but not after,
conditioning. This is consistent with the hypothesis that neuronal
activity is reorganized following DFC and that auditory cortex
can no longer modulate the freezing response following
conditioning, as suggested by previous work showing that
learning specificity is not dependent on auditory cortical activity
after fear conditioning3. Since neuronal activity no longer
predicted learning specificity after conditioning, we hypothesized
that there would be changes in neuronal activity following
conditioning. Therefore, we next investigated changes in response
and neuronal discriminability following DFC.

After DFC, neuronal discriminability between CS+ and CS− is
preserved. It has been suggested that ‘fear memories’ are encoded
in the auditory cortex following differential fear conditioning14,16,
implying that neuronal discriminability may improve following
conditioning. We found that neuronal activity following DFC no
longer predicted learning specificity (Figs. 2f and 3d), suggesting
AC does not support the fear response after DFC. We tested
whether the neuronal discriminability of CS+ and CS− changed
after DFC by comparing the mean Zdiff across pre- and post-DFC
sessions (Fig. 4a). We found no change in Zdiff from pre- to post-

DFC in conditioned mice (Supplementary Table 1, rm-ANOVA
Tukey–Kramer post hoc comparison, p= 0.740), whereas there
was a significant decrease in pseudo-conditioned mice
(Tukey–Kramer post hoc comparison, p= 0.028). Results were
similar at a neuronal population level; mean SVM performance in
conditioned mice did not change across pre- and post-DFC ses-
sions (Fig. 4b, Supplementary Table 1, rm-ANOVA
Tukey–Kramer post hoc comparison, p= 0.573), whereas there
was a significant decrease in pseudo-conditioned mice
(Tukey–Kramer post hoc comparison, p= 0.001). Combined, we
found that following DFC or pseudo-conditioning, neuronal
discrimination between the CS+ and CS− was maintained in
conditioned mice, while it decreased in pseudo-conditioned mice.
These results suggest that changes in AC do not improve neural
discriminability. Rather, plasticity in AC in conditioned mice
appeared to counteract previously reported habituation in neu-
ronal responses to repeated stimuli17,24.

To further investigate how neuronal discrimination changed
over time, we tested the neuronal discrimination performance of
the SVM using cells tracked across pairs of imaging sessions. We
trained the SVM using one imaging session and obtained a
baseline SVM performance on data held out from the training
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Fig. 4 Changes in neuronal discrimination post-DFC. a Comparison of
mean ± sem Zdiff between the pre- (sessions 1–4, blue) and post-DFC
sessions (5–8, orange) in conditioned (N= 14) and pseudo-conditioned
(N= 9) mice. Statistics: Two-way rm-ANOVA, Tukey–Kramer post hoc,
p= 0.028, Supplementary Table 1. b Same as (a) but for comparison of
mean ± sem SVM performance between the pre- and post-DFC. Statistics:
Two-way rm-ANOVA, Tukey–Kramer post hoc, p= 0.001, Supplementary
Table 1. c Relationship between mean (±sem) Zdiff across the post-DFC
sessions (sessions 5–8) and mean learning specificity across all retrieval
sessions. Statistics: two-tailed Spearman’s rank correlation, r(12)= 0.39,
p= 0.175. Black line shows best linear fit. d Same as (c) but for mean
(±sem) SVM performance across the post-DFC sessions and mean learning
specificity. Statistics: two-tailed Spearman’s rank correlation, r(12)= 0.34,
p= 0.264. †p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, n.s.p > 0.10. Source
data are provided as a Source data file.
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session. For testing, SVM performance was measured using data
from the same neurons as the training session, in the testing
session (Supplementary Fig. 6a & b). If neuronal discriminability
is maintained in conditioned mice, we would expect that there
would be no change in performance between training and testing
sessions. By contrast, in pseudo-conditioned mice, as neuronal
discriminability appears to decrease, we expected to observe a
decrease in performance particularly between sessions pre- and
post-DFC. In conditioned mice, there was a small deficit in the
testing sessions compared with training sessions, which did not
change over different pairs of sessions. In contrast, in pseudo-
conditioned mice, we observed the same deficit in testing sessions
compared with training, but the deficit increased as the number
of sessions between testing and training sessions increased. A
linear regression of difference in performance with mouse group
(m) and number of sessions between training and testing pairs (s)
as predictors indicated that the slope of the relationship was
significantly different between conditioned and pseudo-condi-
tioned mice (Supplementary Table 1, m*s, p= 0.020). Similarly,
we observed a decrease in Zdiff as the number of sessions between
pairs increased in pseudo-conditioned mice, but not in condi-
tioned mice (Supplementary Fig. 6c & d, Supplementary Table 1,
Linear regression, m*s, p= 0.004). Neuronal representations are
stabilized over time with behavioral relevance and drift
without24,25. To assess whether representation of the CS+ and
CS− was stabilized in conditioned vs. pseudo-conditioned mice
we investigated whether there was drift in the Zdiff of populations
of neurons. If there is drift in the neuronal representation, then
the similarity of Zdiff between individual neurons over time
should become progressively dissimilar. We calculated the
similarity (Pearson’s correlation) of Zdiff scores of neurons
tracked between pairs of imaging sessions (Supplementary
Fig. 6e). We fit a linear mixed-effects model to predict how Zdiff
similarity between sessions was affected by the time between
imaging sessions and whether mice were conditioned or pseudo-
conditioned. We found there was a negative effect of number of
imaging sessions between pairs of sessions on Zdiff similarity
(Supplementary Table 1, t(624)=−2.87, p= 0.004), but no
difference in the effect between conditioned and pseudo-
conditioned mice (t(624)= 1.28, p= 0.201). In summary, there is
evidence of drift in the Zdiff score of both groups of mice,
indicating that the Zdiff of individual cells became progressively
dissimilar. In conditioned mice, the average Zdiff was maintained,
while in pseudo-conditioned mice it decreased.

Different levels of learning specificity across mice could
potentially account for the different levels of neuronal discrimin-
ability post-DFC. We therefore tested whether there was any
correlation between the neuronal discriminability (mean Zdiff
score and SVM performance) and the learning specificity post-
DFC. The mean Zdiff score (imaging sessions 5–8) did not
correlate with the mean learning specificity across retrieval
sessions 1–4 of conditioned mice (Fig. 4c, Spearman’s rank
correlation, r(12)= 0.39, CI [−0.25, 0.73], p= 0.175), nor was
there a correlation between the mean SVM performance post-
DFC and the mean learning specificity post-DFC (Fig. 4d,
r(12)= 0.34, CI [−0.22, 0.79], p= 0.264). This suggests that
neuronal discriminability post-DFC does not reflect learning
specificity.

After DFC, normalized responses at CS+ increased in condi-
tioned mice. It has previously been shown that after differential
conditioning with pure tones, select neurons in AC amplified the
difference between CS+ and CS−16,26. However, since we
observed no change in neuronal discrimination in conditioned
mice, we hypothesized that there would be no change in response

to CS+ and CS−. To test whether responses were altered by
conditioning, we compared frequency response functions from
the pre- and post-DFC imaging sessions of responsive neurons
that were tracked from pre- to post-DFC (Supplementary Fig. 7a).
On an individual neuron basis, we observed heterogeneous
changes in the frequency tuning (Fig. 5a, Supplementary Table 1).
However, on average, in conditioned mice, the normalized
response to CS+ and frequencies between the CS+ and CS−
increased, whereas the response at CS− did not change (Fig. 5b,
two-way rm-ANOVA, Tukey–Kramer post hoc testing, p < 0.05,
Supplementary Table 1). In contrast, in pseudo-conditioned mice,
the mean normalized responses at most frequencies, including
both CS frequencies, did not change (Fig. 5c, Supplementary
Table 1). When comparing normalized responses at CS− and
CS+ in conditioned mice and the CS stimuli combined (CSc) in
pseudo-conditioned mice, there was a significant increase at the
CS+ and no change at CS− or CSc (Supplementary Table 2,
Tukey–Kramer post hoc comparison, p < 0.001). Although we
observed an increase in normalized response to CS+, there were
no significant changes in non-normalized responses to condi-
tioned frequencies in conditioned mice (Supplementary Fig. 7b, d,
& e, Supplementary Table 1). We observed decreased responses to
most frequencies in pseudo-conditioned mice (Supplementary
Fig. 7c, f, & g, Supplementary Table 1). When comparing non-
normalized response changes to CS+, CS− and CSc, we found a
significant decrease at CSc but not at CS+ or CS− (Supple-
mentary Table 3, Tukey–Kramer post hoc comparison, p < 0.001).
It is likely that the normalization of the frequency response
functions has amplified a small change that is not strong enough
to be present in the absolute responses.

Despite the lack of significant change in the non-normalized
responses, it is possible that the increase in normalized responses
at CS+ and the lack of change in response at CS− in conditioned
mice could lead to improved discriminability between CS+ and
CS− by increasing the difference between the responses to each
stimulus. This would be consistent with the hypothesis that,
following fear conditioning, reorganization of neuronal activity
serves to amplify the relative difference in responses to CS+ and
CS− thereby supporting discriminability16,18. However, when we
compared the magnitude of changes in normalized response to
CS+, CS−, and the difference between the two with learning
specificity, we did not find any correlation (Supplementary Fig. 8),
suggesting that the changes observed are in fact not related to
storage of the fear memory27. We further investigated by
checking for a relationship between the change in neuronal
discrimination (Zdiff and SVM performance) and learning
specificity (Supplementary Fig. 9) finding negative correlations
between the two factors. This suggests that the responses of
neurons that were most predictive of learning specificity changed
less than responses of neurons that were less predictive,
supporting the idea that reorganization of cortical activity
following DFC does not depend on the fear memory, and may
be due simply to random drift25.

Previous studies found that the best frequency of neurons shifts
toward the conditioned stimulus (CS+) after DFC with pure
tones16. We observed changes in the distributions of best
frequencies following DFC (Fig. 6a, b). To quantify the relation-
ship of these changes to DFC, we calculated the absolute distance
of the best frequency of responsive neurons to the CS+
frequency. Consistent with a shift in best frequency toward the
CS+, we observed a small decrease in the absolute distance of best
frequency from CS+ (of mean response functions pre- and post-
DFC for each neuron) in responsive neurons of conditioned mice
(Fig. 6c, −0.07 octaves, two-way rm-ANOVA, Tukey–Kramer
post hoc, p < 0.001, Supplementary Table 1) but not in pseudo-
conditioned mice (p= 0.934). It is possible that neuronal
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discrimination between CS+ and CS− could be altered by a
change in frequency tuning width12. As a measure of tuning
width we used the sparseness of the frequency response
function28,29: A neuron with high sparseness responds strongly
to one or few frequencies tested and little to other frequencies; a
neuron with a sparseness of zero would indicate an equal
response to all frequencies tested. We found that sparseness
decreased in both conditioned and pseudo-conditioned mice
(Fig. 6d, two-way rm-ANOVA, F(1,1503)= 20.93, p < 0.001) and
that there was no difference in the magnitude of change between
the two groups of mice (F(1,1503) = 0.21, p= 0.649, Supplemen-
tary Table 1).

To verify that the results were robust to variability in frequency
tuning between conditioned and pseudo-conditioned mice, we

performed the analysis on change in response, change in distance
of best frequency from CS+, and change in sparseness resampling
the same number of neurons from each best frequency bin (12
bins). This had the effect of normalizing the best frequency
distributions pre-DFC between mice. We found that there was
still an increase in response at the CS+ in conditioned mice while
there were no changes at CS−, and no changes at either CS in
pseudo-conditioned mice (Supplementary Fig. 10a). Furthermore,
we found that despite the increase in response at CS+ in
conditioned mice, there was no change in the absolute distance of
best frequency from the CS+ while there was an increase in
distance from CS+ in pseudo-conditioned mice (Supplementary
Fig. 10b). Sparseness fell in both groups of mice (Supplementary
Fig. 10c). Observing the best frequency distributions post-DFC
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Fig. 5 Changes in frequency representation post-DFC. a Mean (±sem) response across repeated presentations (N= 25 repetitions). We tracked the
responses of neurons responsive at least once pre- and post-DFC. The panels show three example frequency response functions from tracked neurons
from conditioned and pseudo-conditioned mice pre-DFC (blue) and post-DFC (orange). Significant differences in the response functions are indicated by
the squares above (two-way rm-ANOVA, Tukey–Kramer post hoc analysis, Supplementary Table 1). Arrows show the frequencies of the CS− (11.4 kHz)
and CS+ (15 kHz) and CSc. Squares indicate significant changes (two-way rm-ANOVA, Tukey–Kramer post hoc analysis, Supplementary Table 1). b (top)
Mean (±sem) normalized frequency response functions of tracked responsive neurons across all conditioned mice (N= 14 mice, n= 879 neurons).
(bottom) Mean (±sem) percent change in normalized frequency response functions of the same neurons, squares indicate significant changes (two-way
rm-ANOVA, Tukey–Kramer post hoc analysis, Supplementary Table 1). c (top) Same (b) for pseudo-conditioned mice (N= 9 mice, n= 626 neurons).
(bottom) Percent change in normalized frequency response functions for the same cells as above, squares indicate significant changes (two-way rm-
ANOVA, Tukey–Kramer post hoc analysis, Supplementary Table 1). Source data are provided as a Source data file.
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(Supplementary Fig. 10d), this change in best frequency in
pseudo-conditioned mice is driven mostly by an increase in
neurons with best frequency at the extremes of our measurement
(5 and 32 kHz). Qualitatively, the conditioned mice showed
increased numbers of neurons tuned at and above the CS+ and
decreased numbers below CS+ compared with pseudo-condi-
tioned mice. Thus, pairing of the CS+ with the shock led to
increased number of neurons tuned to frequencies at and above
the CS+ compared with an unpaired shock. Combined, whereas
we find some changes in tuning consistent with classical results,
these changes do not account for the individual variability in
learning specificity across mice.

To investigate whether variability in the region of sampling in
each mouse affected the main findings, we split the mice into two
groups based on the location that the center of their imaging field
of view mapped onto the anterior-posterior axis (Supplementary
Fig. 2). Locations that also contained the auditory thalamus
(medial geniculate body) were assigned to primary auditory
cortex (A1), whereas, locations lacking MGB were assigned to
anterior auditory field (AAF)30. We found that the changes in
response at CS+ were driven by neurons in putative A1 where
there was a significant increase in normalized response and not in
putative AAF where there was no change in response (Supple-
mentary Fig. 11a). The distance of best frequency from CS+
increased on average in AAF while there was no change in A1
(Supplementary Fig. 11b). However, we found no effect of
imaging region on prediction of learning specificity by Zdiff or the
SVM performance pre-DFC (Supplementary Fig. 11c, d) and no
effect of imaging region on change in Zdiff from pre- to post-DFC
(Supplementary Fig. 11e). Thus, there appears to be a differential
effect of change in response at CS+ following conditioning for
primary regions A1 and AAF, but this does not appear strongly
related to the learning specificity (Supplementary Fig. 11f).

In summary, we observed heterogeneous changes in responses
of individual neurons tracked from pre- to post-DFC. In
conditioned animals, there was, on average, an increase in
normalized response at CS+ and no change at CS−, however, the
increase was not observed in non-normalized response changes.
In pseudo-conditioned mice, we observed no changes in normal-
ized responses at the CS stimuli. We observed a small shift in best
frequency toward CS+ in conditioned mice. Sparseness of the
frequency response functions decreased in both conditioned and
pseudo-conditioned mice, indicating that frequency tuning
became broader after conditioning, thus unlikely to support

improved discriminability. Combined, these results reconcile our
findings with previous studies, which had effectively, by
not sampling responses from the same neurons pre- and post-
DFC, normalized the responses. It is plausible that previous
studies observed an increase in normalized activity at CS+, which
did not translate into an actual population-wide increase in
discriminability.

A learning model of the fear circuit. We found that AC activity
prior to learning predicts specificity of learning, yet the reorga-
nized neuronal responses do not correlate with learning specifi-
city. In order to better understand our findings in relation with
previous results, we built a simple model that consisted of two
frequency-tuned populations of neurons and a neuronal popu-
lation that responds to the foot-shock. Our goal was to test
whether this simple model could account for both the findings in
this manuscript and from previous work, in particular: (1) Dis-
criminability between CS+ and CS− in AC predicts learning
specificity post-DFC (Figs. 2 and 3); (2) Suppressing inhibition in
AC leads to increased generalization (decreased learning specifi-
city) post-DFC12; (3) Suppressing AC post-DFC does not affect
learning specificity3,11.

In the model, we included two populations of frequency-tuned
neurons (representing the medial geniculate body, MGB, and AC).
MGB receives auditory inputs and projects to AC. Both populations
project to basolateral amygdala (BLA). AC sends tonotopically
organized feedback connections to MGB. During conditioning, the
MGB neurons receive sound inputs and the neurons in the BLA are
active during the foot-shock (Fig. 7a). The weights from MGB and
AC to BLA are updated according to a Delta learning rule (see
“Methods”), that is, they are potentiated when both are co-activated
(i.e., when the foot-shock coincides with the sound stimulus). We
control the level of overlap in frequency tuning between neurons in
AC, which drifts over time25, and use it to represent frequency
discriminability (more overlap= less discriminability). The activity
of the BLA after weight update and with auditory input only is used
as a measure of freezing.

First, we first tested whether broad tuning in AC (low neuronal
discriminability between CS+ and CS−) during conditioning
produced more generalized freezing than sharp tuning (high
neuronal discriminability). We found that increased overlap in
frequency tuning in AC neurons, without changing the tuning of
MGB neurons, drove more generalized freezing responses (Fig. 7b,
Supplementary Fig. 12). This is due to the fact that, when AC was
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broadly tuned, CS+ tone activated AC neurons not only
responding to the CS+ frequency but also to other frequencies,
such as the CS−, albeit to a lesser extent. After learning, this
resulted in strong AC to BLA synaptic weights that are not specific
to CS+. MGB is narrowly tuned in our model, but the weights
from MGB to BLA were also strengthed in a non-specific fashion
because AC projects back to MGB. Therefore, CS+ also activated
non-specific neurons in MGB concurrently with the foot-shock.
These results support the present findings (Figs. 2 and 3). Drift in
the tuning properties of the neurons in the model led to the
correlation between learning specificity and tuning width
decreasing over time since conditioning, consistent with our
finding that neural activity post-DFC no longer predicts learning
specificity (Fig. 4). Second, we examined the effects of decreasing
inhibition in the AC population during conditioning (Fig. 7c,
Supplementary Fig. 13). Decreasing inhibition resulted in an
increased overlap in frequency responses in the AC population,
which in turn led to increased generalization, supporting previous
findings and providing a mechanism12,31. Third, we tested the
effects of inactivating AC during conditioning and we found that
learning specificity was reduced, consistent with the hypothesis
that AC affects tone discrimination during DFC (Fig. 7c,
Supplementary Fig. 14). Finally, we tested whether inactivating
the auditory cortex following conditioning had an effect on
freezing responses (Fig. 7c, Supplementary Fig. 15). Consistent
with previous findings3,11, we did not observe a change in fear
generalization following AC inactivation. The broad or narrow
tuning of AC neurons allowed for the synapses from MGB to BLA
to be strengthened either narrowly or broadly during condition-
ing. Therefore, with suppression of AC during memory recall, the
specialized versus generalized learning was preserved.

Combined, the model demonstrates that a simple anatomically
consistent circuit supports multiple aspects of cortical control of
fear conditioning identified here and in previous studies.

Discussion
Our results identify the role of the auditory cortex in differential
fear learning: (1) Prior to fear learning, neuronal responses in AC
shape fear learning specificity (Figs. 2 and 3); (2) Following dif-
ferential fear conditioning, neuronal response transformations are
not correlated with fear learning specificity (Fig. 5, Supplemen-
tary Fig. 8), and therefore the auditory cortex does not encode
auditory differential fear memory; (3) Neuronal activity in AC
post-DFC does not correlate with freezing behavior (Fig. 4); (4) A
simple model of the auditory nuclei and the basolateral amygdala
could account for our results as well as a number of previous
findings (Fig. 7).

Our finding that the neuronal activity prior to fear conditioning
predicted specialization of fear learning provides a mechanism for
the role of AC in differential fear memory acquisition10–12,13,31.
Specifically, inactivation of inhibitory neurons in the AC during
fear conditioning led to increased generalization of fear learning
with pure tones12. Suppressing inhibitory neurons in the AC led to
a decrease in Fisher information, which reflects the certainty about
a stimulus in neuronal representation31. This change would likely
result in a decrease in neuronal discriminability between the
dangerous and safe tones in the AC, and therefore drive an
increase in fear generalization, as demonstrated by our model
(Fig. 7). Our results provide the link between optogenetic inacti-
vation of interneurons in AC leading to increased fear general-
ization, and to increased frequency tuning width12, which
decreases neuronal discriminability.

By using two-photon imaging to record from the same neurons
over the course of differential fear conditioning, we were able to
compute changes in both absolute and relative neuronal activity
of a large number of identified neurons, a feat not normally
achievable with electrophysiology16,18. Previous work found that
changes in neuronal responses to the dangerous and safe stimuli
after differential fear conditioning amplified the difference
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Fig. 7 A learning model reconciles present and past findings. a (left) Connectivity between auditory cortex (AC, gray), medial geniculate body (MGB,
orange), and basolateral amygdala (BLA, blue). (Right) Model connectivity. MGB receives auditory input and provides input to AC (orange lines), and both
MGB and AC provide inputs to BLA (blue lines). AC feeds back to MGB (black lines). Colored circles represent neurons tuned to different, overlapping
frequency ranges. b Normalized learning specificity output from the model with varying levels of AC discriminability, achieved by changing the frequency
tuning overlap between the neurons in the AC population, σctx. Learning specificity was measured at two time points, immediately after DFC (black) and
104 time-steps later (blue). c Normalized learning specificity at two AC discriminability levels; fine (light blue) and broad (dark blue) tuning. Results are
shown for learning specificity with no interventions, when inhibition is reduced in AC during DFC (analog of when ArchT-transfected PV interneurons in
AC are inactivated by optogenetics during DFC), when AC is inactivated during DFC (in the model), and when AC is inactivated during memory recall
(analog of an injection of muscimol during memory recall; PV= parvalbumin-positive interneurons, ArchT=Archaerhodopsin-T). Source data are provided
as a Source data file.
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between the responses16,18. This change was proposed to repre-
sent fear memory14,18,27. We identified similar transformations in
the normalized response functions of neurons that were tracked
pre- to post-conditioning, finding an increased relative response
to the CS+. However, these changes did not correlate with
freezing behavior suggesting that the neuronal code in the AC
after fear conditioning does not reflect differential fear memory.
Indeed, a number of studies found that inactivating the auditory
cortex after fear conditioning with pure tones does not affect fear
memory retrieval3,11 (but see ref. 13). Combined, our results
restrict the role of auditory cortex in fear conditioning to pure
tone differential fear memory acquisition, but not retrieval.

If the increase in normalized response at CS+ is not related to
fear memory, then why is there an increase in response? It
could be reflective of increased attention caused by presentation
of the CS+ and that the discrimination of the CS stimuli is
unaffected by this effect32. Furthermore, changes in frequency
map organization do not necessarily relate to changes in beha-
vioral frequency discrimination of pure tones33,34, thus over-
representation of the CS+ could be induced by learning but not
necessary for discrimination.

To locate our findings with previous work, we implemented a
simple, anatomically accurate35,36 model with connections from
auditory nuclei to the basolateral amygdala (Fig. 7). The model
demonstrated that (1) neuronal activity in cortex can predict
subsequent learning specificity; that (2) inactivation of PV
interneurons in AC during DFC leads to increased
generalization12, and that (3) the auditory cortex is not necessary
for differential fear memory retrieval3,11 and (4) that dis-
crimination is still possible with AC inactive during conditioning
but learning specificity is reduced. The model proposes that either
MGB or AC or a combination of both can induce auditory fear
memory through the strengthening of connections in the amyg-
dala. We propose that feedback from auditory cortex to the MGB
contributes to discrimination of perceptually similar pure tone
stimuli during DFC by controlling stimulus discrimination in the
MGB. This may be a direct projection neuroanatomically35,37,38.
Random drift accounts for the lack of correlation between neu-
ronal tuning and learning specificity after conditioning25. Future
studies need to explore the role of the MGB and specific pro-
jections between AC, MGB, and BLA in fear learning and
memory. It is likely that such an important behavioral mod-
ification as fear has redundant pathways to obtain the same
behavioral outcomes11,39–41.

Our results relied on tracking the neuronal responses in all
transfected neurons in AC without distinguishing between dif-
ferent neuronal subtypes. Previous studies found that a specific
class of inhibitory neurons increases activity with presentation of
repeated tones17,24. It is therefore plausible that our results
include a subset of neurons that function differently during fear
conditioning but which we were unable to identify due to lack of
selective labeling. Furthermore, we restricted our recordings to
layers 2 and 3 of the auditory cortex, and it is possible our results
overlook more specific changes in the thalamo-recipient layers of
the cortex42,43. The complexity of transformations in the cortical
microcircuit and between layers with learning can be explored
further44–47.

The results of the study may be restricted to pure tone stimuli.
We chose pure tone stimuli because these stimuli provide a well-
defined axis (frequency) along which to vary stimulus dis-
criminability and there is strong evidence to suggest auditory
cortex modulates discrimination of pure tones33,48,49. Further-
more, in human subjects, AC encodes threat during DFC for pure
tone stimuli20. Our prior work established that large frequency
separation between CS+ and CS− results in uniform specificity
of the fear response among subjects, whereas smaller frequency

separation, such as the one used here, provides for a gradient of
specificity across subjects3,12. Other studies have found that AC is
not behaviorally relevant for discrimination between pure tones
separated by large frequency distances11,50. However, when the
frequencies were brought closer together, then manipulation of
AC activity did affect behavior50. Therefore, it is unclear whether
recent conclusions that AC is involved in processing of more
complex stimuli and not pure tones are due to differences in
complexity of the stimulus, or to the degree to which AC can
discriminate these stimuli. Furthermore, the FM sweeps used in
these studies are not necessarily more complex than pure-tones
for AC processing. Indeed, neurons in the inferior colliculus,
which is two synapses earlier than AC, differentiate between FM
sweeps, e.g., ref. 51. Ultimately, the relevant aspect of the present
study was the ability to measure how well neuronal ensembles
differentiate between two stimuli. We achieved this by bringing
CS+ and CS− close together in frequency, and we found that
neuronal discriminability of the stimuli differed across mice and
correlated with behavioral discriminability prior to DFC. We
would not expect this result were the stimuli not relevant for AC.
Furthermore, inactivation of AC during conditioning in the
model led to decreased learning specificity (Fig. 7). Future studies
will dissect to what extent the differences in neuronal codes in AC
shape differential fear learning of more complex and natural
sounds and its role in other forms of learning34,50,52,53.

Our results may be applicable to understanding anxiety dis-
orders. An extreme example of fear generalization is realized in
PTSD54. Here we find that the present state of each individual
brain, in terms of neuronal discrimination of stimuli, is predictive
of the future generalization of fear in the subject. This suggests
that a way to prevent generalization of dangerous and safe sounds
is to improve neuronal discrimination of potentially threatening
stimuli55–58. Further work in this area can lead to a deeper
understanding how genetic and social factors, as well early life
experiences, shape the role of sensory cortex in this common and
devastating disorder7,57.

We identified a neuronal correlate for inter-individual differ-
ences in learning specificity. We found that the mammalian
sensory cortex plays key role in stimulus discrimination during,
but not following, differential fear conditioning. These results
reconcile several previous findings and suggest that the role of
sensory cortex is more complex than previously thought. Inves-
tigating the changes in the cortico- and thalamo-amygdala circuit
during fear learning will pave way for new findings on the
mechanisms of learning and memory.

Methods
Mice. All experimental procedures were in accordance with NIH guidelines and
approved by the IACUC at the University of Pennsylvania. Mice were acquired
from Jackson Laboratories (20 males, 10 females; PV-Cre (5) [Stock No: 017320],
CamKII-Cre mice (1) [Stock No: 005359] or Cdh-23 mice (24) [Stock No: 018399])
and were housed in a room with a reversed light cycle. Experiments were carried
out during the dark period. Mice were housed individually after the cranial window
implant. 19 mice (13 males, 6 females) were in the conditioning group and 11 mice
(7 males, 4 females) were in the pseudo-conditioned control group.

The Auditory Brainstem Response (ABR) to tone pips (4–32 kHz, 10–80 dB
SPL) was acquired before or at the end of the experiment, when possible, in order
to confirm that mice had thresholds for the stimuli at or below the presentation
level (Supplementary Fig. 16). Mice with ABRs >70 dB were excluded from the
study (N= 2 pseudo-conditioned mice, 1 PV-Cre & 1 Cdh-23) resulting in 9
pseudo-conditioned mice in total.

Euthanasia procedures were consistent with the recommendations of the
American Veterinary Medical Association (AVMA) Guidelines on Euthanasia.

Surgical procedures. Mice were implanted with cranial windows over auditory
cortex. Mean age of cranial window implant: 9.6 weeks [6.3–13.0 weeks]. Briefly,
mice were anaesthetized with 1.5–3% isoflurane and a 3-mm circular craniotomy
was performed over the left auditory cortex (stereotaxic coordinates) using a 3-mm
biopsy punch centered over the stereotaxic coordinates of A1 (70% of the distance
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between bregma and lambda, 4.3 mm lateral to the midline). An adeno-associated
virus (AAV) vector encoding the calcium indicator GCaMP6s or GCaMP6m
(AAV1.Syn.GCaMP6s.WPRE.SV40 or AAV1.Syn.GCaMP6m.WPRE.SV40,
UPENN vector core) was injected (750 nl, ~1.89 × 10−12 genome copies.ml−1) at a
750 µm depth from the surface of the brain at 60 nl min−1 for expression in layer 2/
3 neurons in A1. Three injections were made at the same lateral distance but
separated by 0.5 mm in the anterior-posterior direction or 5 injections were made
spread across the window (0.3–0.5 mm apart). The injection needle was left in place
for 10 mins after the injection was complete before retraction. Injections were made
using a pump (Pump 11 Elite, Harvard Apparatus, USA) and needles were pulled
(P-97 Puller, Sutter Instruments, USA) from glass pipettes (Harvard Apparatus,
USA) with tip openings of 30–50 µm. After injection, a circular 3-mm diameter
glass coverslip (size 0 or 1, Warner Instruments) was placed in the craniotomy and
fixed in place using a mix of cyanoacrylate glue and dental cement. A custom-made
stainless-steel head-plate (eMachine Shop) was fixed to the skull using C&B
Metabond dental cement (Parkell). The implant was further secured using black
dental cement. Mice were allowed to recover for 3 days post-surgery.

Behavioral training and testing. Mice underwent a minimum of 4 imaging ses-
sions (range: 4–11) prior to differential auditory fear conditioning (DFC). DFC and
subsequent fear retrieval testing took place in two different contexts (A and B,
discussed below). Before and after each conditioning or retrieval, we cleaned the
conditioning and testing chambers with either detergent (retrieval chamber) or
70% ethanol (conditioning chamber). We recorded a video of the mouse in the
testing chamber using FreezeFrame 3 software (Coulbourn) at 3.75 Hz; the sub-
sequent movement index (mean grayscale values of frame [n+ 1] minus the
preceding frame [n]) was exported and analyzed offline using MATLAB. The
threshold of movement was defined as the 12.5th percentile of the values from each
session. The mouse was considered to be freezing if the movement index was below
the threshold; the measure of freezing was expressed as a percentage of time spent
freezing during stimulus presentation and for baseline during the 30 s prior to
stimulus onset.

Stimuli were generated using FreezeFrame 3 and presented at 70 dB SPL from
an electrostatic speaker (ES-1, TDT) mounted above the animal. DFC took place in
context A (Fig. 1). Stimuli were 30 s in duration and were either a continuous pure
tone (4 mice) or pulsed pure tones (500 ms duration at 1 Hz). The CS+ (15 kHz)
was paired with a foot-shock (1 s, direct current, 0.7 mA, 10 pairings, inter-trial
interval: 50–200 s) delivered through the floor of context A (by precision animal
shocker, Coulbourn). The foot-shock either co-terminated with the continuous
tone or the onset coincided with the final tone pulse of the CS+ stimuli. The CS−
(11.4 kHz) was presented after each CS+-foot-shock pairing but was not reinforced
(10 presentations, inter-trial interval: 20–180 s). Fear memory retrieval sessions in
context B followed each two-photon imaging session after conditioning. The CS+
and CS− were presented 4 times (30 s duration, interleaved, inter-trial interval:
30–180 s). For 4 mice, longer continuous presentations of the CS+ and CS− were
presented (either 120 s, 1 mouse, or 60 s, 3 mice), for these mice, trials were divided
into 4 equal durations and treated as above. In pseudo-conditioning, the foot-
shocks were presented interleaved between the stimuli in periods of silence.
Baseline freezing consisted of an equal time of silence prior to tone onset.

Conditioned mice that did not freeze either to CS+ or CS− were removed from
subsequent analysis (two-way ANOVA for each mouse on freezing scores to CS+,
CS− and baseline from all retrieval sessions (16 trials for each CS and 32 trials for
baseline). Stimulus (CS+/CS−) and baseline (stimulus/no stimulus) were the
independent variables. Learners were defined as those with significant effect of
baseline or baseline*stimulus, p < 0.05). Five mice (4 males, 1 female, all Cdh-23
strain) were excluded from the study, leaving 14 conditioned mice (9 males, 5
females).

For each mouse the learning specificity (LS, Eq. (1)3) was calculated as:

LS ¼ ∑
N

i¼1
frCSþ ðiÞ=N � ∑

N

i¼1
frCS� ðiÞ=N ð1Þ

Where i is the trial index, frCSþ=� ðiÞ is the fraction of time spent freezing during trial
i in the CS+/− condition, respectively, and N is the number of trials per condition.

Calcium imaging procedure and acoustic stimuli. All imaging sessions were
carried out inside a single-walled acoustic isolation booth (Industrial Acoustics).
Mice were placed in the imaging setup, and the head plate was secured to a custom
base (eMachine Shop) serving to immobilize the head. Mice were gradually habi-
tuated to head-fixing over 3–5 days, 3–4 weeks after surgery and before imaging
commenced. Imaging took place in mice aged 19.6 ± 2.5 weeks ±sem at the end of
experiments.

We recorded changes in fluorescence of GCaMP6s/m caused by fluctuations in
calcium concentration in transfected neurons of awake, head-fixed mice, using
two-photon microscopy (Ultima in vivo multiphoton microscope, Bruker). We
used a 16X Nikon objective with 0.8 numerical aperture (Thorlabs, N16XLWD-
PF). The laser (940 nm, Chameleon Ti-Sapphire) power at the brain surface was
kept below 30mW. Recordings were made at 512 × 512 pixels and 13-bit resolution
at ~30 frames per second.

Stimuli were generated at a sampling rate of 400 kHz using MATLAB
(MathWorks, USA) and consisted of 100-ms long tone pips in the 5−32-kHz

frequency range presented at 60–80 dB SPL. In a single recording session, each
frequency was repeated 15–30 times in a pseudo-random order with a 4-s inter-
stimulus interval.

Cell tracking across imaging sessions. We imaged the activity from the same
cells over 15 days in layers 2/3 of auditory cortex, using blood vessel architecture,
depth from the surface, and the shape of cells to return to the same imaging site. To
identify regions of interest (ROI) across imaging sessions that corresponded to the
same cell, the maximum-projection fluorescence images from each day were
registered by transforming the coordinates of landmarks present in both images in
MATLAB (2017a) using the fitgeotrans function. The transformation was applied
to ROIs from the second imaging session to match the first—all subsequent ses-
sions were aligned to the first imaging session. We next calculated the distance
between all the pairs of centroids (mean x–y position of each ROI) across the two
sessions; ROIs from the two sessions were then automatically registered as the same
cell based on the nearest centroid. We then manually checked the shape and
position of the ROIs for any pairs that had duplicate matches, <80% ROI overlap,
or a larger than average distance between the centroid locations (>2 standard
deviations). ROIs which were not matched to any earlier ROIs were counted as new
cells. This process was repeated for subsequent sessions, registering the imaging
field to the first session, and comparing the ROIs to the cumulative ROIs from
previous sessions. A final manual inspection of all the unique ROIs was performed
after all the imaging sessions were registered. ROIs that overlapped with each other
extensively were excluded from the dataset since it was unclear whether they were
the same or different cells. Examples of tracked cells and aligned ROIs are shown in
Supplementary Fig. 1.

Data analysis and statistical procedures. Publicly available toolboxes59 running
on MATLAB were used to register the two-photon images, select regions of interest
(ROI), and estimate neuropil contamination, resulting in a neuropil-corrected
fluorescence trace (F) for each neuron (F= trace−(neuropil*0.7)). From this
corrected trace, we calculated the mean baseline fluorescence (Fbaseline) and stan-
dard deviation of the baseline (Fstd) over the one second prior to tone onset, and
then determined the change in fluorescence over time relative to the mean baseline
fluorescence (ΔF= F−Fbaseline) for each sound presentation. We then divided ΔF
by Fstd, effectively calculating the z-score of the fluorescence response relative to the
baseline (ΔF/Fstd) for each sound presentation.

The response to each tone was defined as the mean ΔF/Fstd over 2 s following
tone onset. Neurons were deemed sound responsive if at least one of the frequency
responses was different from zero (t-test, p < 0.05, corrected for multiple
comparisons using the Holm–Bonferroni method). The frequency response
function was defined as the mean response to each tone frequency across repeats.
Best frequency was defined as the frequency with the highest mean response.
Sparseness (S, Eq. (2)28,29) was used to estimate the sharpness of response
functions, with 1 being very sharply tuned and 0 being an equal response to each
tone frequency:

a ¼ ∑ri
� �

=N
� �2
∑ r2i =N
� � ; S ¼ 1� a

1� 1=N
ð2Þ

where ri is the mean response to the frequency i, and N is the total number of
frequencies tested.

The Z-scored difference between responses to CS+ and CS− (Zdiff, Eq. (3)) was
calculated for each neuron using the following equation:

Zdiff ¼
∑rCSþ=N �∑rCS�=Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σrCSþ � σrCS�
� �r

��������

��������
ð3Þ

where rCSþ=CS� is the single-trial mean responses (mean ΔF/Fstd over 2 s post-
stimulus onset) to CS+ and CS−, respectively, N is the number of repeats of each
stimulus and σ is the standard deviation of mean responses. The Zdiff score was
considered significant if the actual Zdiff was larger than the 95th percentile of the
distribution of Zdiff scores calculated with shuffled the CS+/CS− response labels
250 times. For mice not presented with CS+ or CS− frequencies under the two-
photon, the data were linearly interpolated to estimate responses at CS− and CS+.
We used average Zdiff across pre-DFC sessions of mice to test whether there was a
difference between using GCaMP6s (6/23) and GCaMP6m (17/23). We found no
difference (unpaired t-test, t(21)= 1.04, p= 0.309) between the mean Zdiff scores of
the two groups of mice and thus we have analyzed them together.

For fitting the Support Vector Machine (SVM), we used MATLAB’s fitcsvm
function with a linear kernel and 10-fold cross-validation to predict the learning
specificity based on the standardized single-trial population responses (mean ΔF/
Fstd over 2 s post-stimulus onset for each neuron).

We calculated the confidence intervals of Spearman’s rank correlations using a
bootstrap procedure, resampling, with replacement, the data 1000 times, and
computing the Pearson’s correlation between the resampled data. We defined the
95% confidence limits of the correlation coefficient (r) as the 2.5th and 97.5th
percentiles of the resulting distribution of correlation coefficients. In order to assess
whether two correlations were significantly different from one another we
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subtracted the bootstrapped r distributions of each dataset from one another, the
change in r was considered significant if 95% CI of the difference-distribution did
not overlap with zero.

To compare results between testing groups (conditioned/pseudo-conditioned)
we used two-way repeated measures ANOVAs, linear regressions, and linear
mixed-effects models with the relevant variables (see Supplementary Tables 1–3).

For mice that were not tested at 11.4 and 15 kHz under the two-photon
microscope (4 conditioned mice) responses were interpolated from the frequency
response functions pre- and post-DFC. For cells present in more than one session
either pre- or post-DFC, the frequency response curves from each session were
averaged and the changes in response were assessed from the mean across pre- and
post-DFC sessions. For comparing the fluorescence traces of responses
(Supplementary Fig. 7d–g), for the 4 mice not tested directly at CS+ and CS−, the
nearest frequencies were used.

Confirming anatomical location of recording. Upon conclusion of the imaging
sessions, we removed the windows of the mice and injected a red fluorescent
marker (Red Retrobeads, CTB or AAV5.CAG.hChR2(H134R)-mCherry.W-
PRE.SV40 [mCherry]) into the site of imaging as identified by blood vessel pat-
terns. Briefly, we anaesthetized mice with 1.5–3% isoflurane and used a drill
(Dremel) to remove the dental cement holding the window in place. We removed
the glass window and injected the red marker into the imaging site (Red Retro-
beads: 250 nl, CTB: 500 nl (0.5%), mCherry: 500 nl) using a glass pipette (tip
diameter: 40–50 µm) at 60 nl min−1. Following the injection, we covered the
exposed brain with silicon (Kwik-Sil, World Precision Instruments) and then
coated it with dental cement. After allowing time for retrograde transport (retro-
beads and CTB: 1 week) or viral transfection and expression (mCherry: 3 weeks)
mice were deeply anesthetized with a mixture of Dexmedatomidine (3 mg/kg) and
Ketamine (300 mg/kg) and brains were extracted following perfusion in 0.01 M
phosphate buffer pH 7.4 (PBS) and 4% paraformaldehyde (PFA). They were fur-
ther fixed in PFA overnight and cryopreserved in 30% sucrose solution for 2 days
before slicing. The location of imaging was confirmed through fluorescent imaging
(Supplementary Fig. 2). For Retrobeads and CTB, the injection site was clear as a
very bright injection site, for mCherry, expression levels were measured across the
AC and the site of imaging was assumed to be the section with the strongest
expression/brightest red. The identified sections were cross-referenced with the
Allen Institute Mouse Brain Atlas using freely available software60.

Model. We simulated cortical neuronal populations, MGB populations, and a BLA
neuronal population in a rate-based description of neuronal activity. We simulated
N ¼ 10 MGB populations. Each MGB population receives N ¼ 10 inputs xi

MGB,
i= 1...N. To model the fact that neighboring inputs are correlated, we generated the
inputs xi assuming that they each have a similar tuning to stimuli. These stimuli
were modeled as 10 time-dependent activities sjðtÞ (which corresponded to a sound
amplitude at a given frequency, j). The activity of input i was calculated by a sum of
the stimulus channels, weighted with tuning strengths

xMGB
iðtÞ ¼ ∑

j
TMGB

ijsj tð Þ þ xctx jðtÞ. The input tuning was Gaussian: TMGB
ij ¼

e�
i�jð Þ2

2σMGB

� 	
þ
for i and j going from 1 to 10. :½ �þ means that negative values are set to

zeros. The term xcxt corresponds to the direct cortical feedback. The parameter
σMGB regulated how broad the population response is to the sound. In the model,
we assumed that MGB neuronal populations always have a small overlap in
neuronal responses (σMGB = 0.8).

Similarly, we simulated N ¼ 10 cortical populations as xctx i tð Þ ¼ ∑
j
Tctx

ijx
MGB

j tð Þ.

The input tuning was also Gaussian: Tctx
ij ¼ 1

1:8

h
e�

ði�jÞ2
2σctx � Ictx

i
þ
for i and j from 1 to

10. Ictx = 0.9 was a broad inhibitory term.
In the simulations, we tested for two different values of initial σctx ; one

corresponding to narrow tuning with a small overlap (σctx = 3), and one
corresponding to broad tuning with a large overlap (σctx = 10). (Note that
σMGB = 0.8 was equivalent to σctx = 3 since we did not model MGB inhibition here,
IMGB = 0). To avoid boundary effects, we had a circular boundary condition of the
10 inputs, meaning that input 1 and input 10 are neighbors. We also assumed that
the tuning σctx would drift over time. Specifically, at every time step, we added a
uniform random noise between −0.25 and 0.25 to σctx:σctx was bounded between 4
and 20.

Finally, we simulated one population in the BLA. It received inputs from both
cortical and MGB populations, i.e., y ¼ wMGBxMGB þ wctxxctx , where wMGB are the
weights from MGB neurons to the BLA neurons, and wctx are the weights from
cortical neurons to the BLA. Normalized freezing response was computed as the
activity after the fear conditioning paradigm (see below) normalized by the
maximal activity (i.e., when the weights are all 1).

During the fear conditioning training to simulate a CS− tone, we set (channel
number 6) s6 ¼ 1, all the other inputs to zero, and a CS+ we set (channel number
3) s3 ¼ 1, all the other inputs to zero. In addition, we paired it with a shock (e= 1 if
there is a shock, e= 0 otherwise). The synaptic weights were plastic under the
following rules: 4wctx=MGB

i ¼ αxctx=MGB
ie, where α= 0.1 is the learning rate. This is

analogous to the standard Delta rule. The weights were bound between 0 and 1 and
are initialized at 0.1. We simulated the fear conditioning for 10 time-steps [arbitrary
time] and spontaneous dynamics with tuning σctx drift for another 10,000 time-
steps. To simulate optogenetic inactivation of PV neurons in AC12, which decreases
inhibition in AC, we lowered inhibition in AC by setting Ictx ¼ 0:45 (half the
‘normal’ level), the maximum freezing was computed with the original inhibitory
term intact (Ictx ¼ 0:9). To simulate pharmacological inactivation of AC during
memory recall (after learning), we tested the behavior of the model with AC
inactivation by setting xctxi ¼ 0 during the BLA simulation protocol.

References. Recent work in several fields of science has identified a bias in citation
practices such that papers from women and other minority scholars are under-
cited relative to the number of such papers in the field61–69. Here we sought to
proactively consider choosing references that reflect the diversity of the field in
thought, form of contribution, gender, race, ethnicity, and other factors. First, we
obtained the predicted gender of the first and last author of each reference by using
databases that store the probability of a first name being carried by a woman65,70.
By this measure (and excluding self-citations to the first and last authors of our
current paper), our references contain 11.52% woman(first)/woman(last), 4.86%
man/woman, 28.08% woman/man, and 55.54% man/man. This method is limited
in that (a) names, pronouns, and social media profiles used to construct the
databases may not, in every case, be indicative of gender identity and (b) it cannot
account for intersex, non-binary, or transgender people. Second, we obtained
predicted racial/ethnic category of the first and last author of each reference by
databases that store the probability of a first and last name being carried by an
author of color71–73. By this measure (and excluding self-citations), our references
contain 9.93% author of color (first)/author of color(last), 14.5% white author/
author of color, 15.09% author of color/white author, and 60.47% white author/
white author. This method is limited in that (a) names and Florida Voter Data to
make the predictions may not be indicative of racial/ethnic identity, and (b) it
cannot account for Indigenous and mixed-race authors, or those who may face
differential biases due to the ambiguous racialization or ethnicization of their
names. We look forward to future work that could help us to better understand
how to support equitable practices in science.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed data that support the findings of this study are available in Dryad at
https://doi.org/10.5061/dryad.wpzgmsbhw. The raw imaging data are available upon
request. Source data are provided with this paper.

Code availability
The model code and custom-written analysis code that support the findings of this study
are available in Dryad at https://doi.org/10.5061/dryad.wpzgmsbhw.
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