
Resource
A robot-rodent interaction
 arena with adjustable
spatial complexity for ethologically relevant
behavioral studies
Graphical abstract
Highlights
d New behavioral task merges interaction with others and

complex environments

d Autonomous robots pursuing mice with airpuffs reliably

mimics predator-prey events

d Presence of robot and obstacles leads to higher path

diversity and pausing

d When pausing, mice peeked around obstacles and lured the

robot for easier escape
Lai et al., 2024, Cell Reports 43, 113671
February 27, 2024 ª 2023 The Author(s).
https://doi.org/10.1016/j.celrep.2023.113671
Authors

Alexander T. Lai, German Espinosa,

Gabrielle E. Wink,

Christopher F. Angeloni,

Daniel A. Dombeck, Malcolm A. MacIver

Correspondence
d-dombeck@northwestern.edu (D.A.D.),
maciver@northwestern.edu (M.A.M.)

In brief

Lai et al. aim to improve rodent behavioral

tasks by incorporating elements based

on nature: reconfigurable obstacles for

areas of varying visibility and an

autonomous robot for interacting with

others. The diverse sets of behaviors

observed suggest that the new task can

consistently elicit natural behaviorswithin

a laboratory setting.
ll

mailto:d-dombeck@northwestern.edu
mailto:maciver@northwestern.edu
https://doi.org/10.1016/j.celrep.2023.113671
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2023.113671&domain=pdf


OPEN ACCESS

ll
Resource

A robot-rodent interaction arena
with adjustable spatial complexity
for ethologically relevant behavioral studies
Alexander T. Lai,1,5 German Espinosa,2,5 Gabrielle E. Wink,3,5 Christopher F. Angeloni,4,5 Daniel A. Dombeck,4,*
and Malcolm A. MacIver1,2,3,4,6,*
1Department of Biomedical Engineering, Technological Institute E311, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208,

USA
2Department of Computer Science, Northwestern University, Seeley Mudd 3219, 2233 Tech Drive, Evanston, IL 60208, USA
3Department of Mechanical Engineering, Technological Institute B224, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208,

USA
4Department of Neurobiology, Northwestern University, Hogan 2-160, 2205 Tech Drive, Evanston, IL 60208, USA
5These authors contributed equally
6Lead contact

*Correspondence: d-dombeck@northwestern.edu (D.A.D.), maciver@northwestern.edu (M.A.M.)

https://doi.org/10.1016/j.celrep.2023.113671
SUMMARY
Outside of the laboratory, animals behave in spaces where they can transition between open areas and
coverage as they interact with others. Replicating these conditions in the laboratory can be difficult to control
and record. This has led to a dominance of relatively simple, static behavioral paradigms that reduce the
ethological relevance of behaviors and may alter the engagement of cognitive processes such as planning
and decision-making. Therefore, we developed amethod for controllable, repeatable interactionswith others
in a reconfigurable space. Mice navigate a large honeycomb lattice of adjustable obstacles as they interact
with an autonomous robot coupled to their actions. We illustrate the system using the robot as a pseudo-
predator, delivering airpuffs to the mice. The combination of obstacles and a mobile threat elicits a diverse
set of behaviors, such as increased path diversity, peeking, and baiting, providing a method to explore etho-
logically relevant behaviors in the laboratory.
INTRODUCTION

The rich emergent behaviors that neuroscience seeks to under-

stand occur in natural environments where there is variability in

cover (for example, from open areas tomore cluttered spaces1,2)

and where competition or cooperation with other animals oc-

curs. Such environmental variability and interactivity are absent

from most laboratory paradigms for rodents even though the

neural circuits driving behavior likely evolved for survival under

these conditions. Here we describe an experimental system

that attempts to encourage more ethological behaviors by

combining two rarely combined features: a spatially complex

arena and an interactive agent.

With some recent exceptions,3–6 traditional laboratory arenas

are static and non-interactive, with appetitive or aversive inani-

mate stimuli provided at fixed times or locations, reducing task

complexity. These studies have revealed a rich array of cognitive

representations of the latent variables describing behavior in

such environments, such as place, heading direction and grid

cells, and neurons storing choice or value information.7–11 How-

ever, it is possible that cognitive representations such as these

are engaged differently under more ethologically relevant condi-
C
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tions. For example, recent research has begun to address the

question of how the brain encodes the location and behavioral

tendencies of others, but these studies were largely performed

under conditions where the other was not task relevant.12,13

Few, if any, place cells of others were identified, possibly

because of the lack of task relevance of the other. More recent

experiments increasing the task relevance of the other14,15

have shown that self-place cell firing can be modulated by the

location of conspecifics in the environment. Because these cir-

cuits likely evolved to encode ethologically relevant interactions,

a greater understanding of their function is likely to emerge as

experiments approach more natural conditions, highlighting

the need for new, more ethologically relevant laboratory para-

digms for studying interactions with others.

Of course, a major advantage of the sparse and simple

spatial layout of traditional laboratory arenas, such as an

open field, linear tracks, and T-mazes,16–18 is the ability

to perform highly repeatable, controlled experiments that

maximize statistical power. Intuitively, the spatial complexity

of these spaces differs considerably from that of natural envi-

ronments. We provide quantitative evidence for this difference

below. It is possible that the simplicity of traditional
ell Reports 43, 113671, February 27, 2024 ª 2023 The Author(s). 1
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Magnetized movable obstacles break the rodent’s

line of sight to the robot and the robot’s line of sight

to the rodent and facilitate diverse rodent behaviors

amid mobile threats or opportunities. Multiple high-

speed cameras ensure continuous tracking, and

high-speed custom processing of the images en-

sures low latency between changes in the rodent’s

behavior and changes in the autonomous robot’s

behavior. Automated doors open and close to

sequence the rodent through the rewards of the task

under the control of the experiment controller.
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experimental paradigms alters cognitive processing in animals

behaving in these spaces or makes particular processes diffi-

cult to study. For example, the neural substrates of planning

have not been clearly established. Many studies have investi-

gated this question,19–21 though largely in traditional simple

mazes. One of the most likely substrates are the ‘‘preplay’’

events in the hippocampus during sharp wave ripples, which

lead to rapid sequential activation of remote place cells. But

large debates persist about whether these neural signals

represent recall of past trajectories or are, in fact, thoughts

about the future.22 This problem is exacerbated by what could

be called the ‘‘Groundhog Day effect’’ of highly simplified

spatial layouts: if the space an animal has experienced in the

past is unchanged from the one that it will experience in the

future, then it is difficult or impossible to disentangle memory

from foresight. Notably, using a task that increased trial-to-trial

path diversity provides some of the best evidence for planning,

with prospective replay events often seemingly predicting

future navigation paths.19

A task logic analog of the Groundhog Day effect is that cur-

rent task designs result in the test subjects quickly learning the

task contingencies, leading to habituation and a reduction of

behavioral indicators of planning, such as vicarious trial and er-

ror (VTE).23 Thus, the statistical consistency of an animal’s path

through a typical laboratory test environment, or the repetitious

nature of the task itself, appears to be an important variable in

the study of cognitive processes such as planning. However, it

is rarely varied systematically in experiments, particularly to the

level found in more natural contexts. Given these consider-

ations and broader calls for new laboratory paradigms to probe

animal behavior in complex, ethologically relevant situa-

tions,24–26 there is an opportunity to bring some of the

complexity of natural scenarios into the laboratory without

compromising the control of the experiment’s variables and

statistical power.
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To address these issues, we designed a

system that provides the control and

repeatability of previous paradigms but fa-

cilitates more naturalistic behavioral tasks

through two key innovations: rapidly recon-

figurable obstacles and a mobile robotic

agent (Figure 1). The physical basis of the

system is an arena with removable obsta-

cles in a honeycomb lattice; this allows
the experimenter to vary spatial complexity, enabling configura-

tions in naturalistic, partially cluttered arrangements and facili-

tating rapid switching between spatial layouts. Multiple high-

speed cameras ensure reliable tracking of mice throughout the

space despite these obstacles. Controllable interaction with an

‘‘other’’ is provided by a mobile, wireless robot that is coupled

to the behavior of the mouse with negligible latency. Finally,

automation allows multiple hours of operation without human

intervention beyond animal subject and robot battery

replacement.

Here, we provide details regarding the design and imple-

mentation of this system, termed cellworld for brevity, and

discuss results from one particular implementation that emu-

lates naturalistic predator-prey encounters by pitting the

mouse against an airpuff-equipped, predator-like variant of

the robot. Several other possible configurations, such as using

the robot as prey or for phonotactic localization, are described

in Table S1.

With the robot-predator configuration, we found evidence of

a rich array of behaviors, spanning from highly variable trajec-

tories (occurring at a rate of z1 trial/min or slower) to trajec-

tories that are used repeatedly with little variation (occurring

at a rate of z2 trial/min or faster). High-variability trajectories

included peeking at and seemingly luring or baiting the robot

predator away from the location the mouse needed to reach

for its reward, not unlike the broken-wing display found in

birds.27 Peeking in rodents appears to emerge in the context

of more complex naturalistic conditions,28–31 and we are not

aware of prior observations of baiting in rodents. These behav-

iors and the path diversity we observed across trials may be

specifically useful for future studies of the cognitive representa-

tion of others or mechanisms of planning, and cellworld may be

generally useful for enriching task designs for research into de-

cision making, navigation, learning, memory, fear, and anxiety,

among other domains (Table S1).
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RESULTS

Creating naturally inspired spaceswith a reconfigurable
arena
The hexagonal arena, shown in Figure 2, is 2.34 m at its widest

length (2.56 m2) and is comprised of 331 hexagonal cells with

a center-to-center distance of z11 cm, slightly more than one

standard adult mouse body length. Each cell has a pair of mag-

nets for securing obstacles above a thin vinyl membrane (for

removal of odor cues between subjects) that lies on top of the

magnetized floor. This design allowed us to rapidly reconfigure

the arrangement of obstacles for each experimental session

(Figures 2B–2D).

With the goal of studying behavior in a more ethological

context, we used a generative algorithm to create arenas that

more closely resembled the spatial statistics of natural land-

scapes. To accomplish this, we used a single parameter, en-

tropy,1 to create random arrangements of obstacles (Figure 2E).

In the simplest terms, entropy describes the degree of clutter in a

space; a space with very few obstacles has low entropy, and a

space that is half-filled with obstacles has maximum entropy.

Next we measured how these more naturalistic spaces

compared with classic laboratory setups for studying rodent

behavior. To accomplish this, we recreated classic mazes from

prior studies, including linear tracks, T-mazes, and radial-arm

mazes (Figure 2D).

We hypothesized that the complexity of the experimental

space might be useful for natural behaviors and therefore

considered the visual connectedness of various arena layouts.

To do so, we computed the network degree complexity (here-

after called spatial complexity1) of generated arenas, our

versions of classical mazes, and other spaces, such as natural

landscapes. Spatial complexity summarizes the visual connect-

edness of a space; high-complexity arenas contain amix of short

and long sight lines, while low-complexity arenas contain primar-

ily short or primarily long sight lines. Intuitively, this measure re-

lates to the behavioral utility of a space; high-complexity spaces

provide a mix of hiding spots and long sight lines to gather infor-

mation, features that may be useful for evading a predator or

planning.

We generated 500 random arena configurations at 14

different entropy levels (STAR Methods) and then computed

the spatial complexity for each of these arenas. We found

that the spatial complexity of the arenas peaked at mid-range

levels of entropy (0.4–0.5) with a complexity of 0.80 ± 0.02

(Figure 2E). This value is similar to the most prevalent spatial

complexity value found by repeatedly sampling satellite images

of a savanna landscape (0.80; STAR Methods; Figure 2E, right).

Spatial complexity analyses of other savanna samples and key

terrestrial habitats have similar results.1 In comparison, some

complexities of our renderings of classic mazes were found

to be much lower than these natural landscapes, ranging be-

tween 0.00 and 0.17. These results suggest that, by controlling

the entropy level of randomly generated obstacles, we can

control the complexity of the cellworld arena. Furthermore,

arenas generated with mid-level entropy are more similar to

natural landscapes than to classic maze designs. Based on

these results, we hypothesized that a subset of the generated
arenas are ideal for planning and evasion and therefore focused

our later behavioral experiments on the two extremes of spatial

complexity: an open arena (entropy, 0.0; spatial complexity,

0.0) and an obstacle configuration with mid-level entropy (en-

tropy, 0.5; spatial complexity, 0.74; Figure 2C, center). Howev-

er, these spatially complex environments contain a large num-

ber of occlusions, requiring a multiview tracking system for

consistent behavioral monitoring, which we describe next.

A multiview camera system for continuous tracking in
occluded spaces
We designed the camera system in cellworld to meet two exper-

imental goals: (1) to consistently observe the mouse’s position in

spatially complex arenas and (2) to control the behavior of a me-

chanical agent with negligible latency after automatically de-

tected changes in mouse position and orientation (which we

describe in the next section). To meet these goals, the system

uses four high-frame-rate and low-latency infrared cameras.

The cameras are suspended 200 cm above the arena floor,

and each covers a specific quadrant (Figure 3A), capturing

2,040 3 2,040-pixel images at a rate of 120 frames per second

(fps). This layout is designed to minimize blind spots created

by obstacles within the arena—a crucial aspect because impor-

tant behaviors could occur near these obstacles (Figure 3B).

Additionally, the high frame rate and low latency of these cam-

eras enabled real-time monitoring of animal movements, allow-

ing us to couple the behavior of an autonomous robot to that

of the mouse.

To perform mouse tracking, we acquired perspective-cor-

rected, stitched images from the four cameras (STAR

Methods) and then removed all static elements using back-

ground subtraction. The remaining features (mouse and robot)

were identified using color-connected components. Robot

tracking was simplified through three light-emitting diodes

(LEDs) on the top of the robot (Figure 3F). This enabled us to

perform real-time monitoring of robot and mouse movements

with an average latency of 3.2 ms and facilitated swift

response to changes in animal behavior. For the current study,

the frame rate and throughput of the system were capped at

90 Hz because that was found to be sufficient for updating

the robot’s heading when moving quickly through obstacle

fields, but cellworld’s tracking system can process a maximum

of approximately 200 fps (Figure S2B). In summary, this

tracking system allowed continuous behavioral monitoring of

a mouse in a densely occluded, ethologically inspired space

while also facilitating low-latency control of a robotic agent.

An autonomous mobile agent coupled to animal
behavior
A crucial aspect of natural behavior in many species is interac-

tion with others, but these behaviors can be difficult to control

in the lab. To that end, we engineered a fully autonomous robot

(Figures 3C–3E) whose behavior is tied to that of the mouse with

nomore than 11ms of latency. The robot itself has no vision sys-

tem, but we synthesized an omnidirectional visual sensory vol-

ume based on images from the camera system, the location of

the robot, and the location of the obstacles. The robot then

used closed-loop control to pursue the mouse when it was in
Cell Reports 43, 113671, February 27, 2024 3
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Figure 2. The reconfigurable behavior arena

(A) Exploded computer-aided design view, with the front walls removed for illustrative purposes. There are 331 magnetized hexagonal cells over an area of

2.56 m2, with a long diagonal length of 2.34 m. Inset: the magnetic attachment system. Not shown is a seamless acrylic and vinyl membrane between the

obstacles and floor for cleaning and removal of odor cues.

(B) Photos of three configurations of obstacles (corresponding to 0.1, 0.5, and 0.9 entropy; STAR Methods).

(C) Top-down view diagram of the obstacle configuration corresponding to the photos in (B). The 0.5 arena matches the occluded condition for behavioral

experiments with mice in this study. Background color corresponds to the configuration’s spatial complexity (labeled as SC) value shown on the bottom right of

each configuration. The spatial complexity colorbar is shown in (E).

(D) Configurations of cellworld to match some commonly used laboratory assays of learning and memory. Grayed out areas of the habitat represent areas not

accessible to mice that were fully filled in with obstacles for spatial analysis. The spatial complexity labels and colors follow the same pattern as (C).

(E) Left: spatial complexity versus entropy. The line plot shows 500 repeats for each of 14 different entropy levels of cellworld, alongwith other configurations. The

shaded gray area represents the standard deviation. The dashed orange line represents the mode of spatial complexities in the natural landscape. Right:

illustration of the random sampling process used to select 1,162 hexagonal cellworlds of the natural landscape. The worlds are scaled so that each cell is 2 m in

size, the approximate size of a small herbivorous prey animal common in this habitat, for a total world size of 50m. 162 samples that did not include any coverage

(spatial complexity of 0) were removed for the calculation of the mode. The natural landscape is a binarized Google Earth image representing a 1,9413 1,139 m

portion of the Okavango Delta in Botswana. The full color image and details of the natural landscape can be seen in Figure S1.

(F) Histogram of spatial complexity of the worlds generated for the line plot in (E), including the spatial complexity of other configurations and patterns from

(C) and (D). Color corresponds to spatial complexity. The colorbar is shown in (E).
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‘‘view’’ and to otherwise search unseen locations when the

mouse was out of view (Figure 4A). (Note that this means that

freezing responses on the part of the rodent have no effect on

the robot’s ability to perceive; it would be simple to modify this

so that the robot only ‘‘sees’’ the mouse upon movement.)

Next, we took advantage of this low-latency coupling between
4 Cell Reports 43, 113671, February 27, 2024
the robot and themouse’s behavior to simulate predator-prey in-

teractions in the lab.

To do so, we outfitted the robot with an airpuff module,

which consisted of a CO2 tank and a valve actuated via a mo-

tor to release a sequence of two brief, powerful blasts of air

when the mouse came within 32 cm of the robot (Figure 4A;
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Figure 3. The camera system and an autonomous interacting agent

(A) Raw video from the four cameras. Note landmarks on the top and bottom walls.

(B) Main outputs of the camera system, including a summary of themouse detection pipeline. Left: stitched image processed from the four raw camera views. The

robot predator is at the lower right. Center: mouse detection process utilizing background subtraction and color-connected components. Right: magnified view of

a mouse peeking around an obstacle at the predator robot from the four camera views. Were the video taken with the upper-right camera alone, the peeking

behavior would not be registered, and automated tracking would fail.

(C) Exploded view of the robot showing main components, with the aversive stimulus module used for the experiments described here.

(D) Image of the robot configured with a CO2 canister for airpuff delivery.

(E) Front and side views of the computer-aided design model of the robot.

(F) Top view of the robot in the arena. Inset: a magenta circle is used to depict the airpuff attack threshold (left) and background subtraction is used to identify the

robot’s three light-emitting diodes for tracking (right).
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Videos S1 and S2). We term this aversive airpuff sequence an

‘‘attack’’ event, but note that, due to the modular design of the

robot, other stimulus modes (such as appetitive rewards, vi-

sual, or auditory stimuli) may be used.

To test whether the ability to attack made the robot more

behaviorally relevant to the mouse, we performed a pilot study

where mice first interacted with a stationary or pursuing robot

with the airpuff disabled and then enabled the airpuff for the

following experimental sessions. Consistent with prior airpuff re-

sults,32,33 we found that the mice significantly increased the dis-

tance between their location and the robot after entering the

attack threshold (n = 2 mice; airpuff enabled, 93.0 ± 36.1 cm;

airpuff disabled median ± interquartile range [IQR] distance,

25.5 ± 10.7 cm; p = 8:163 10� 78; Figure S3; Videos S3 and

S4). From this, we concluded that the airpuff-equipped robot

was behaviorally relevant to the mouse and induced escape or

avoidance behaviors, which allowed us to leverage cellworld to

create a task inspired by predator-prey dynamics.
A predator-prey inspired behavioral task disrupts
stereotyped navigation
With the capability of creating a spatially complex arena

patrolled by an aversive robot, we devised a behavioral task

modeled on predator-prey interactions. In this task, mice start

on one side of the arena and must navigate to the other side of

the arena while evading a pursuing robot to reach a water reward

(the robot evade task, called BotEvade hereafter for brevity;

Figure 4).

To facilitate multiple mouse traversals within a single 30-min

experimental session, we engineered several additional compo-

nents for the cellworld system: (1) chambers containing water

lick ports and automated doors at the start and end of the arena

and (2) an external return chute that connects the chambers to

allow the mouse to return to the start and reset the system for

another trial. Both the doors and the water feeders were

controlled and monitored by software that coordinates events

between the robot, rodent, and components of the arena, called
Cell Reports 43, 113671, February 27, 2024 5
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Figure 4. The BotEvade task, modeled after predator-prey interactions

(A) State flow diagram. The two processes that comprise themain process (black rectangle), for whenmice are over 32 cm away from the robot, are ‘‘pursue’’ and

‘‘search.’’ Below the pursue behavior node is an illustration of a typical pursuit scenario: the mouse is in view of the robot, and while in view, the robot will pursue.

Below the search behavior node is an illustration of a typical search scenario: the mouse is out of view, and the robot randomly selects a cell out of view to go to

(purple line and cell). When the mouse is less than 32 cm away from the robot, the ‘‘Attack’’ process (red rectangle) is triggered for releasing the sequence of two

airpuffs.

(B and C) Experiment events shown alongside door events for the four automated doors (two at the start port, two at the end port).

(D) A single trial of rodent-robot interaction during the BotEvade task. A loud white noise generator prevents mice from hearing the position of the robot when it is

out of view, and the arena is cleaned with ethanol between subjects to remove olfactory cues.

(E) Composite image of the arena, with experiment lighting on the left and overhead lighting on the right for clarity.

6 Cell Reports 43, 113671, February 27, 2024
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Figure 5. Learning the BotEvade task and aversive airpuff

(A) Route pattern enforced by the BotEvade task.

(B) For experiments with obstacles, over a period of up to 22 days for 8 mice, there is a sequence of four phases: (1) one day of corridor training (CT), where a

channel connects the start and end doors; (2) arena training (T), where mice run through the task at their own pace, with no robot present, until trials per minute

plateau and the mouse runs more than 15 trials per 30-min session; (3) robot (R), where mice now are challenged with the robot predator until trials per minute

plateau, followed by an additional 2 days of trials; and (4) 5 days where mice experience the same conditions as in the prior phase but without the robot (PR). For

the R phase, we show the robot configured with 360� vision for the shown position. In this and other typical robot locations, the obstacles provide many locations

for the mice to avoid being seen by the robot. The total number of trials collected across all phases and mice is 6,678.

(C) Trial count during T for 8 mice (individual colored lines, average trace ± standard deviation indicated by a black dashed line and gray shading). A vertical

dashed line shows the start of the plateau phase.

(D) Change in distance between the robot and mouse over 2 s following an attack (two sequential airpuffs, n = 178 attacks). Red/orange lines represent distance

traces after individual attack events, while the gray distribution represents the 97.5th percentile of the distances when randomly sampling trajectories without

attack events 19,430 times. If an individual trace fell outside of the 97.5th percentile of the random distribution after 1 s, it was considered significant (red traces);

otherwise, it was colored orange.
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the ‘‘experiment controller,’’ which used lick events detected by

the water feeders to determine when to start and end trials. Mice

were guided through the task by specific sequences of door

events (Figures 4B and 4C), allowing them to initiate and com-

plete many trials per experiment (the maximum completion

rate for 8mice was 83 ± 10 trials per 30-min session). With these

systems in place, we developed a training protocol to encourage

repeated interaction between the mouse and the robot within a

spatially complex arrangement of obstacles.

To do so, we trained mice in the BotEvade task with the

following steps. First, 8 mice were acclimated to the reward

zones and return chute using a gutter-like corridor directly linking

the entrance and exit of the arena (CT [corridor training]). Next,

the corridor was removed, and obstacles were placed in a

mid-entropy arena (the random 0.5 arena in Figure 2C) to allow

the mice to learn the spatial layout (T [arena training phase]).

When the mouse behavior stabilized, the robot was introduced

to the environment (R [robot phase]). Then, when behavior in

the presence of the robot stabilized, we removed the robot

from the arena to measure extinction of the behavioral response

to the autonomous predator (PR [post-robot phase]; Figure 5B).

Mice learned the task rapidly, taking 4.0 ± 2.1 days to plateau
during the T phase (Figure 5C). We also found that the airpuff-

equipped robot was an effective aversive stimulus, eliciting

fleeing behaviors in 74.7%airpuff events comparedwith shuffled

data (n = 178 attack events; Figure 5D; Video S2). Thus, we found

that our training protocol encouraged mice to repeatedly

traverse a spatially complex environment, creating numerous

interactions with the aversive robot over the course of the

experiments.

We predicted that the combination of a spatially complex

layout and predatory agent would elicit a richer set of behaviors

compared with a simple spatial layout without a predatory agent.

To directly assess the effect of these two variables, we

compared the cohort of mice in the mid-entropy arena with an

additional cohort of mice that were trained in an open field

(in these experiments, the PR phase was omitted). During

training (T phase), mice had highly variable trajectories with

(n = 8) and without obstacles (n = 2) as they explored the environ-

ment and learned the task (Figure 6A, left column; Video S5).

When the robot was introduced (R phase), different behavioral

patterns emerged in the two environments: in the occluded

arena, routes became more variable and slower, while in the

open arena, mice reverted to thigmotaxis—running along either
Cell Reports 43, 113671, February 27, 2024 7
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Figure 6. Measurements of mouse and robot dynamics during BotEvade

(A) Mouse trajectories from individual trials across experiments with obstacles and no obstacles. Color indicates the mouse’s speed. For the with-obstacle

cellworld experiments (top row), trajectories are shown for the plateau phase of the T phase (n = 1,615), the plateau phase + 2 days for the R phase (n = 1,248), and

for 5 days of the PR phase (n = 2,238) for 8 mice. For the no-obstacle cellworld experiments (bottom row), trajectories are shown for 2 days of the T (n = 182) and

the R phase (n = 220) for 2 mice.

(B) Average number of trials per 30-min session per mouse across each experiment phase (n = 8 mice). In this plot and all other boxplots, the horizontal line is the

median, the box is the interquartile range (IQR), and whiskers are 1.5 times the IQR. Data points beyond the whiskers are denoted by circles. Two-tailed Kruskal-

Wallis (KW) test: H(2) = 16.88, p = 2:163 10� 4; post hoc Dunn test: R vs. PR: padj = 1:233 10� 4. Asterisks indicate significant pairwise Dunn’s tests between

corresponding phases.

(C) Average trajectory length per trial per mouse in each experiment phase. Two-tailed KW test: H(2) = 12.44, p = 1:993 10�3; post hoc Dunn tests: R vs. PR:

padj = 1:393 10�3).

(D) Example clustering results for one mouse in all of the R experiments (left) and all of the PR experiments (right). Trajectories are colored by their cluster

assignment, while the average trajectory for each cluster is indicated by the solid lines outlined in white. The average trajectory thickness was proportional to the

number of trajectories included in the cluster. Inset: cluster distancewas determined by averaging the distance between each individual trajectory and the closest

cluster.

(E) Average number of clusters per mouse in each experiment phase. Two-tailed KW test: H(2) = 15.54, p = 4:223 10� 4; post hoc Dunn test: R vs. PR: padj =

2:613 10�4.

(legend continued on next page)
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the north or south wall at high speeds (Figure 6A, center column;

Video S6). Interestingly, when the robot was removed from the

occluded arena (PR phase), mice largely reverted to two thigmo-

tactic routes along the north and south walls of the arena (Fig-

ure 6A, right column; Video S7).

The highly variable routes in the presence of the robot in the

spatially complex arena suggested that mice engaged in more

sophisticated evasion strategies in complicated environments;

therefore, we focused our subsequent analyses on these exper-

iments. We found that mice completed significantly fewer trials

per 30-min session in the R phase (26.8 ± 14.5 trials) than in

the PRphase (57.3 ± 20.3 trials, padj = 1:233 10� 4; Figure 6B),

taking significantly longer routes to reach the goal during the R

phase (418 ± 34 cm, 1.8 times the shortest path length of

234 cm) compared with the PR phase (340 ± 12 cm; 1.4 times

the shortest length, padj = 1:393 10� 3; Figure 6C).

We suspected that this increase in route length occurred

because (1) the mice chose new routes after being exposed to

the robot, and, (2) when encountering the robot along a preferred

route, mice changed course to evade it. To test these two hy-

potheses, we used QuickBundles34 to cluster the trajectories

from each mouse in each experimental phase. To quantify the

tendency to choose new routes, we counted the number of clus-

ters found in each phase, and to quantify the tendency to deviate

from a route, we calculated the average distance of each

trajectory from the center of the nearest cluster (Figure 6D). We

found that there were significantly more clusters in the R

phase (4.0 ± 0.5 clusters) than in the PR phase (1.0 ± 1.0

clusters, padj = 2:613 10� 4; Figure 6E) and that trajectories

tended to be farther away from the nearest cluster in the R phase

(17.3 ± 3.3 cm) compared with the PR phase (8.0 ± 3.2 cm,

padj = 6:633 10� 5; Figure 6F). Taken together, these results

suggest that mice chose novel routes and deviated from

preferred routes to evade the robotic threat.

Finally, we observed that mouse traversals were significantly

slower in the R phase (98.5 ± 18.9 cm/s) compared with the

PR phase (119.2 ± 24.8 cm/s, padj = 0:027; Figure 6G). This

could reflect deceleration during rerouting, suggested by previ-

ous results (Figures 6E and 6F), or it could reflect slow-downs

and stops. To test this, we quantified periods of time when

mice paused during the experiments (STAR Methods). We

observed that mice paused more frequently near the entrance

during the R phase (2.8 ± 1.7 pauses per trial) compared with

the PR phase (1.2 ± 0.7 pauses per trial, padj = 3:433 10� 3;

Figure 6H). Upon entering the arena, mice paused for longer du-

rations in the R phase (1.5 ± 0.3 s) compared with the PR phase

(1.1 ± 0.3 s, padj = 0:017; Figure 6I). We also examined the fre-

quency of pauses longer than 2 s in duration (Figure 6I, inset) and
(F) Average distance from the nearest cluster per mouse in each experiment phase

PR: padj = 6:633 10� 5.

(G) Average moving speed per mouse in each experiment phase. Two-tailed KW

(H) Distribution of pause duration at the entrance in each experiment phase (color

p = 2:033 10� 3; post hoc Dunn tests: T vs. R: padj = 0:016, R vs. PR: padj =

(I) Distribution of pause duration in the arena in each experiment phase (colors as i

6:283 10� 3; post hoc Dunn tests: T vs. R: padj = 0:017, R vs. PR: padj = 0:0

(J) Average number of long pauses per trial in the arena. Two-tailed KW test on pa

test: R vs. PR: padj = 8:943 10� 3, T vs. PR: padj = 0:044.
found that longer pauses were more prevalent during the R

phase (0.3 ± 0.1 pauses per trial) compared with the PR phase

(0.1 ± 0.1 pauses per trial, padj = 8:943 10� 3; Figure 6J).

Together, these results indicate that mouse behavior is signifi-

cantly changed in the presence of the robot. Mice paused

more at the arena entrance, suggesting that they are more hes-

itant to enter, and they paused more frequently and for longer

durations when inside the arena, possibly to hide or gather infor-

mation about the robot location.

In summary, we used cellworld to assess mouse behavior in

a spatially complex arena while interacting with an aversive

‘‘other’’ agent in the form of an airpuffing robot. We found

that this combination of experimental features resulted in the

disruption of habitual behavioral strategies, such as thigmo-

taxis and route stereotypy, and also resulted in increased

pauses within the arena. Previous work has shown that such

features may indicate planning,23 and we suspected that

mice were using sequences of pauses to evade the robot.

To assess this, we more closely examine examples of com-

plex behaviors that we observed during the BotEvade task

in the following section.

Presence of a robot in a spatially complex environment
elicits complex behaviors
Above, we established that mice took longer, more diverse paths

at lower speeds when the robot was present and paused more

often when engaging with the robot in the arena (Figure 6). We

hypothesized that these changes might reflect deliberation,

such as monitoring the robot’s movements to predict its future

location or planning new routes to evade the robot and reach

the exit. We found several examples of behaviors consistent

with this hypothesis. For instance, we found that mice engaged

in apparent ‘‘baiting’’ behaviors, where a mouse made visual

contact with the robot, returned to a safe location (typically

near the entrance), and then waited for the robot to approach.

When the robot approached the mouse, the mouse escaped

along an open path opposite the robot’s location (typically along

the north wall) toward the exit (Figure 7A, Video S8), effectively

leveraging its higher speed over that of the robot (speed of the

robot, 24.1 ± 1.2 cm/s; speed of the mouse, 68 ± 26.8 cm/s).

We also observed many instances of what appeared to be

‘‘peeking’’ behaviors. In one example (Video S9), the mouse ran

along a familiar path, then encountered the robot blocking the

exit door (Figure 7B, left). After retreating to a safe location,

the mouse then paused between two obstacles and centered

the robot within its binocular zone while concealing its body

behind a nearby obstacle (Figure 7C). After seeming to confirm

the robot’s new location, the mouse then rerouted to a safe
. Two-tailed KW test: H(2) = 18.02, p = 1:223 10� 4; post hoc Dunn test: R vs.

test: H(2) = 8.34, p = 0:015; post hoc Dunn test: R vs. PR: padj = 0:027.

s as in B). Two-tailed KW test on pause frequency for each phase: H(2) = 12.39,

3:433 10� 3.

n B). Two-tailed KW test on pause frequency for each phase: H(2) = 10.14, p =

17. Inset: duration distribution of long pauses (>2 s).

use frequency for each phase: H(2) = 10.03, p = 6:623 10� 3; post hoc Dunn
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Figure 7. Behaviors we term ‘‘baiting the

robot’’ and ‘‘peeking’’

(A) An example of ‘‘baiting behavior.’’ Moments of

‘‘baiting’’ are highlighted with blue numbered cir-

cles. The trajectories of the mouse and robot are

color coded by speed. Here, (1) the mouse comes to

a point where it is seen by the robot, which is typi-

cally at a random location near the goal at the start of

a trial. The mouse (2) then retreats, provoking the

robot to pursue (3). This retreat-pursue cycle re-

peats (4 and 5) until the robot is close to the start

gate (6), when the mouse uses its superior speed to

outmaneuver the robot by running along the north

wall. This trial is shown in Video S8.

(B) An example of ‘‘peeking’’ behavior, where

the mouse (cyan dot) makes initial contact with the

robot, retreats, and then appears to reconfirm the

robot’s location (magenta dot) by making visual

contact with the robot while hiding its body. The

peeking event is highlighted with the red numbered

circle. The trajectories of the mouse and robot are

color coded by speed. Left: the mouse encounters

the robot, then retreats behind obstacles. Center:

from the concealed location, the mouse peeks and

makes line of sight with the robot at 10.28 s

(magenta rectangle indicates the robot hull). Right:

the mouse reroutes and escapes. The legend in-

dicates the speed of the two agents.

(C) Still frames of the mouse pose at the time of the

peek (10.28 s). Left: mouse and robot locations

in the experiment frame. The dashed lines and

open area indicate the binocular field of the mouse

(head direction ± 20�), which was calculated using

DeepLabCut annotations of the mouse pose.35

Center: the corresponding frame of the stitched

video with tracking annotations. Right: magnified

view of the mouse during the peek, indicated by the

black square in the center panel. The mouse’s

stretch-attend posture29 is evident. This trial is

shown in Video S9.
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path avoiding the area near the robot and reached the arena exit

and water reward (Figure 7B, right).

Instances of both baiting and peeking behaviors were found

in 8 of 8 mice. While baiting is specific to the presence of the

robot, we observed peeking in both the presence and absence

of the robot (R and PR phases). In support of this, we manually

identified 15 trajectories across the R and PR phases where

peeking events occurred and 10 trajectories from the R phase

where baiting occurred. Videos of these trajectories can be ac-

cessed through the links found in the Key resources table under

‘‘Additional movies.’’ Though these are only a subset of the

many occurrences of these behaviors we observed, they are

a representative sample. Trajectories with peeking events ex-

hibited higher levels of deviation from typical trajectories,

slower moving speed in the PR phase, and higher episode tra-

jectory lengths and cluster distances in both the R and PR

phases (Figure S4). Similarly, trajectories with baiting events

had higher episode trajectory lengths and distances to the

nearest cluster (Figure S4). All trajectories for each of the 10

baiting and 15 peeking trajectories are shown in Figures S5

and S6. In addition, we took some initial steps to quantify these

behaviors, plotting distances and visual contact between the
10 Cell Reports 43, 113671, February 27, 2024
prey and robot during the R phase ‘‘peeking’’ and ‘‘baiting’’ tra-

jectories (Figures S5 and S6).

Taken together, these results show that the combination of a

spatially complex arena and aversive robotic agent resulted in

a rich set of behaviors, eliciting complex behaviors that are atyp-

ical in traditional task structures. Furthermore, the automation

provided in cellworld allowed many trials within the BotEvade

task, demonstrating the effectiveness of the system for modeling

ethological behaviors with the control and repeatability needed

for laboratory experiments.

DISCUSSION

In this study, we describe a system that allows researchers to

study animal interactions with a robotic agent, enabling a rich

set of task designs set within an arena with adjustable spatial

complexity. The physical basis of the system is a modular arena

that allows flexible configurations of obstacles within a 2.56-m2

open field, supplemented with automated doors and feeders.

The entire arena is monitored by a high-speed tracking system,

allowing the robot to react to the behavior of an animal with a lag

of a hundredth of a second. Here, we leveraged this system to
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create a predator-prey-like task, in which we trained mice to

evade a robot equipped with an aversive airpuff mechanism as

it traversed a complex arena. We found that mouse behavior

was strongly modulated by both the complexity of the arena

and the presence of the robotic predator, finding that mice

took more varied paths compared with predator-free open fields

and observing examples of more complex behaviors, such as

baiting and peeking.

While cellworld is capable of replicating previously published

behavioral tasks (Figure 2D), we argue that this systemalso intro-

duces some distinct advantages over prior approaches. The two

key innovations deployed here are (1) a mobile agent whose

behavior is coupled to that of the experimental subject and (2)

a large, rapidly reconfigurable arena. Below, we detail how these

two experimental features allow experiments that are chal-

lenging, if possible at all, using current methods.

Previous studies have utilized robotic agents to study rodent

behavior, most of which fall into two main approaches: a robot

that moves but is non-reactive to the animal or robots that are

mostly stationary but react when the animal comes within range.

In the studies that implemented non-reactive control, the robot

either moved randomly until it hit the arena wall36–38 or was sup-

plied with a set of predefined destinations to navigate to-

ward.39,40 In the studies that implemented mostly stationary,

reactive robots, the robot remained stationary until the rodent

came within a specified range, and then the robot ‘‘surged’’ to-

ward the mouse.41–44 Finally, most similar to the present work,

there are several studies that implemented reactive mobile ro-

bots. This includes a robot that chases the animal but is other-

wise neutral45 and a ‘‘robotic rat’’ capable of aversive, neutral,

and friendly reactions to the behavior of real rats.46,47

The autonomous robot within cellworld improves upon these

previous approaches in several respects. First, robotic control

is fully reactive to the position of the mouse. This is in contrast

to previous studies in which the robot did not react to the rodent

at all39,40 or in which the rodent received foot shocks when in the

proximity of the robot, but the robot’s behavior was otherwise

unaffected by the animal’s position.36–38 Additionally, other

studies that did use real-time sensing to react to the rodent pro-

vided very simple reaction modes, limited to a forward lunge fol-

lowed by a retreat to the original position.41–44 In the current

study, we improved these previous implementations by using

closed-loop control of the robot’s behavior. This enabled the

robot to chase the mouse with high accuracy over large dis-

tances while still deploying aversive stimulation (airpuffs) to

create negative-valence interactions.

Second, while we focused on an aversive stimulusmode in the

current study, we found that, without the airpuff, the robot was

not inherently threatening to the mice, as indicated by previous

studies.40,45,47 When the airpuff was disabled, we found occa-

sions wheremice would climb onto and stay on themoving robot

(Video S4), suggesting that the fear response was specific to the

airpuff stimulus. With the airpuff module being easily removed,

we can interchange the top half of the robot to any feasible

mechanism as long as it does not interfere with robot navigation.

This provides a wide variety of possible interaction models

ranging from aversive to appetitive stimuli, in contrast to previ-

ous studies using robotic stimuli that were only capable of
inducing fear responses.36–38,41–44 Notably, some previous

studies manipulated the valence of the robot, either by baiting

it with food40 or by engaging in ‘‘friendly’’ biomimicry (i.e.,

when the real rat grooms, the robotic ‘‘rat’’ also grooms) or

stressful attacks.46,47 In line with this previous work, the system

described here will be useful to study social interactions within

large, complex environments. Table S1 lists some alternative

experiment paradigms, including appetitive and social modes.

Finally, the robot in this study was capable of navigating a

large, occluded environment, creating a two-dimensional inter-

action space between the mouse and the robot. Many previous

studies used interaction spaces that were effectively one-dimen-

sional, limiting themice to a narrow corridor with the robot at one

end.41–44 This resulted in very stereotyped escape and freeze

behaviors that were only characterized in one of the studies

mentioned.42 By creating a large, occluded, two-dimensional

interaction space, we found evidence of complex behavioral se-

quences of evasion and information gathering between the

mouse and robot (Figures 6 and 7) in addition to more stereotyp-

ical instances of thigmotactic escapes and freezing. The long

sight lines and many route options through the occluded arena

will be of great utility in the study of planning in the presence of

a dynamic threat, which we believe to be a significant advance

of the cellworld system over prior work.

Another key feature of cellworld is the reconfigurability of the

obstacles within the arena. This allows the experimenter to

recreate traditional experimental setups (Figure 2D), or create

other desired layouts. Existing experiments studying memory,

navigation, decision-making, and planning typically take place

in an open field16,48,49 or in highly simplified mazes.18,50,51 Intui-

tively, these arenas have little in common with natural spaces,

where occluded and open areas are commonly intermingled,

providing locations to hide and gather information; for instance,

while evading a predator. It is possible that the simple layouts

and tasks commonly favored in neuroscience may alter the

cognitive processing of animals behaving in these spaces

compared with the natural contexts in which they evolved, which

largely motivated the creation of cellworld as an alternative plat-

form for studying behavior. How spatial complexity affects

behaviors and neural representations within a given space re-

mains an underexplored question. We have demonstrated that

cellworld may be used to tackle these questions by leveraging

its reconfigurability during an ethologically inspired predator

evasion task.

We took a two-pronged approach to understand the impact of

spatial complexity; we used a generative procedure to create

random arenas with a desired level of entropy (Figures 2C and

2D) and developed methods for quantifying the spatial

complexity of any arbitrary arena layout. Using these methods,

we found that (1) the randomly generated arenas were more

spatially complex than traditional arenas, and (2) the complexity

of the random arenas was similar to the statistics of a natural

landscape (Figure 2E; additional landscapes are analyzed else-

where1). However, it should be noted that, while we focused

on one measure of spatial complexity (network degree

complexity), it is likely that this metric does not capture all of

the elements of a space that might be relevant for behavior

(for instance, a hairpin maze is more complex than many
Cell Reports 43, 113671, February 27, 2024 11
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high-entropy worlds despite having fewer routes). A promising

alternative for further exploration is lacunarity, a metric used by

landscape ecologists that is sensitive to the spatial scale of envi-

ronmental features and can distinguish between repeating

versus random occlusion arrangements.52–54 We applied this

method to the mid-entropy arena used in this study and found

that this configuration closely resembled the lacunarity profile

of a natural landscape (Figure S1G). Furthermore, our previous

work suggested that mid-entropy arenas (such as the one

used in this study) had the greatest utility for planning in simula-

tions of the BotEvade task.1,55 These results suggested

that mice evading a predator within more natural (i.e., high

complexity) spaces are more likely to use planning.

Therefore, we leveraged the features of cellworld to emulate

interactions with a predatory ‘‘other’’ within the ethologically

inspired arena.We found that the spatial complexity of the arena,

paired with a mobile threat, strongly modulated mouse behavior.

In the open arena, mice reverted to thigmotactic routes to evade

the robot, while in the occluded arena, mice engaged in long se-

quences of evasion, taking longer and more diverse paths in the

presence of the robot. This suggests that, in the presence of

threat, low-complexity configurations can lead to more stereo-

typed behaviors, while high-complexity configurations can lead

to more flexible behaviors, as supported by prior computational

studies.1,55 In addition, we observed many examples of ‘‘peek-

ing’’ and ‘‘baiting,’’ actions that are rarely observed in conven-

tional mazes (but see Blanchard and Blanchard,28 Blanchard

et al.,29 and Reinhold et al.28,29,31).

For example, in a trial where the robot remained stationary, the

mouse repeatedly peeked, approached, and retreated from the

now immobile threat, as if in response to a violation of its internal

model (Video S10). Based on this and our previous observations,

we hypothesize that these complex behaviors arose through the

implementation of an internal model to predict the location of the

robot and subsequent planning of routes through the complex

space to avoid it. While a large amount of future research will

be required to test this hypothesis, cellworld and BotEvade

now provide a lab-based method to do so.

Indeed, the instances of ‘‘baiting’’ and ‘‘peeking’’ we observe

resemble previous reports of deliberative behaviors, such as

VTE,23 which coincide with neuronal activity believed to reflect

planning.51,56,57 However, it is unclear whether behaviors such

as ‘‘baiting’’ and ‘‘peeking’’ represent planning or simply a

freezing response upon sensory contact with the threatening

stimulus. As with other examples of distraction displays, such

as the broken-wing display of birds,27 it is possible to interpret

these results without a mechanism for planning; the mouse em-

barks on a route toward the goal, encounters the threatening

stimulus, freezes in fear, and then reroutes to escape as the

threat ‘‘looms’’ toward it (there is evidence for neural mecha-

nisms supporting this interpretation of the behavior58). While it

is unclear whether these behaviors are based on explicit plans,

it is clear that the interplay between the robot and environment

caused these behaviors to arise. It should be noted that the

‘‘peeks’’ and ‘‘baits’’ shown are purely from hand-picked exam-

ples. However, with the large presence of them consistent

across all mice, we are confident that the cellworld system al-

lows us to repeatably capture these complex behaviors. This
12 Cell Reports 43, 113671, February 27, 2024
provides the opportunity to define more detailed methods to

identify, characterize, and assess under what conditions they

emerge, again establishing future avenues to study planning dur-

ing ethologically inspired tasks.

Finally, we note that the inherent discretization of the honey-

comb lattice of cellworld eases synergy with computational

ethology, as common frameworks for reinforcement learning

and partially observable Markov decision process-based plan-

ning algorithms1,59 are in discretized rather than continuous

space. Figure S7 shows a simulation of mouse behavior based

on prior work,1,55 showing good agreement with trials from a

subset of themice. Similar simulations are underway for compar-

ison with the measured behavior of people performing BotEvade

within a scaled cellworld in virtual reality, where the robot has

been replaced with a predator avatar. This simulation environ-

ment is being readied for release along with a future publication.

Traditionally, neuroscience has favored behaviors and stim-

ulus modes that are easily repeatable andmeasurable in the lab-

oratory.16,18,48–50,60–62 More recently, advances in recording

methodologies have allowed neuroscientists to record from

increasingly large numbers of neurons,63–66 and the rise of ma-

chine learning has provided many tools for quantifying natural

behaviors.35,67 With these advances, there is a push to leverage

behavior to study the brain,24–26 but it is unclear how neuroscien-

tists can balance the repeatability of traditional experimental

setups with the need to elicit and quantify natural behaviors.

Here we provide a solution to this problem through a modular

system that allows flexible behavioral task design, closed-loop

control of a mechanical agent, and detailed video monitoring.

We show that we can reliably train rodents to perform hundreds

of trials per hour in the presence of an aversive robot and found

that mice performed complex behaviors that are typically not

observed or not quantified in prior studies. Furthermore, we pro-

vide a generative method for creating random arenas and spatial

complexity metrics to assess how similar the experimental

space is to more naturalistic habitats. Combined, the features

of this system represent a key step toward discovering and

studying ethologically relevant behaviors in a laboratory setting.

Limitations of the study
There are several limitations to our approach. The speed of our

robot is, on average, about 1/3 that of the mouse. This limitation

is a combination of the increased robot size and mass needed

with the aversive module and consequent challenges with

obstacle gaps that are near the width of the robot. Predators

are often larger than prey and therefore can, at times, match or

surpass the speed—if not the agility—of their quarry; the effects

of this regimen would be interesting to explore. In past tests with

faster robots, we have seen a tendency to elicit more reactive re-

sponses, such as thigmotaxis, but a more thorough investigation

is needed when maneuvering and mass issues have been

addressed.

There are several differences between a natural predator and

our robot that could affect the mouse’s behavior. While natural

predators are sources of sound and odorants, these experi-

ments feature frequent cleaning with ethanol to suppress odors

and the presence of masking white noise to prevent the mouse

from hearing the robot (confirmed by many encounters where
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the mouse startled to see a robot after rounding an obstacle).

Additionally, the movement capabilities and search patterns of

the robot used in this study were limited, comprised of a simple

chasing strategy. However, programming the robot with more

advanced strategies is perfectly feasible within the current sys-

tem and will merit further research.

Nonetheless, we suggest that BotEvade approximates pred-

ator-prey interactions. The use of a robot versus a natural pred-

ator is not itself necessarily a problem because mice have no

reason to think that an unknown pursuing agent is anything other

than a predator. One key difference between experimental en-

counters with the robot and an encounter with an actual predator

is that real predator-prey interactions may result in injury or

death. However, as we demonstrate here, the airpuff was suffi-

ciently aversive to elicit escape behaviors on nearly every

encounter (Figure 5D). Therefore, even if we were to outfit our

robot with a lethal mechanical bite, mice would rarely dwell

within striking distance; therefore, for all the mouse knows, the

robot does have a lethal bite. Based on these results, our appa-

ratus is sufficient to elicit naturalistic evasion behaviors, just as

expanding black disk stimuli have been used in prior studies to

study escape from ‘‘looming’’ stimuli.68 While we expect the

mouse is engaged in a predator-prey dynamic with the robot, it

is the case that most predators of mice are likely to be faster,

as we addressed above. This gap between the apparatus and

natural behavior is likely to be more important than the fact

that the robot does not look like a natural threat and a lethal

bite is absent.

Another aspect of natural predator prey interactions is that a

mouse will often freeze when it knows it is in view of the predator

to avoid being seen by the predator. Our robot pursues the

mousewhether or not it has executed a freeze. However, altering

this so that the robot only pursuesmovingmice needs only a very

minor control code change. Whether this is appropriate likely

varies between how much a predator’s visual search relies on

motion versus other factors, such as contrast, which in turn,

will vary with the type of predator being considered. Here we

stayed agnostic to this choice because some predators are

less reliant on motion. We do permit the mouse to briefly peek

around obstacles without being detected (STAR Methods).

Finally, we did not attempt to match natural scene statistics in

cellworld outside of the light spectrum. Wemade the robot black

to contrast the otherwise white cellworld features and have land-

marks on the walls of the space (Figure 3A). Future work should

explore whether contrasting obstacle/wall/robot shapes or

colors are important and whether occlusion arrangements remi-

niscent of other types of natural landscapes (e.g., denser or

sparser arrangements akin to forest or desert environments,

respectively) result in different behavioral strategies than the en-

vironments explored here.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

BotEvade task raw data This paper https://github.com/cellworld/public_data;

https://doi.org/10.5281/zenodo.10308436

Additional movies This paper https://doi.org/10.5281/zenodo.10308436

Additional movies This paper https://cellworld.github.io/paper.html

Experimental models: Organisms/strains

Mus musculus (C57BL/6) Charles Rivers Laboratories https://www.criver.com/products-services/

find-model/c57bl6-mouse?region=3611

Software and algorithms

XCAP software V3.8 Epix https://www.epixinc.com/products/xcap.htm

Color connected components (CCC) Wang et al.69 https://doi.org/10.1109/ICSMC.1997.638094

DeepLabCut Mathis et al.35 https://doi.org/10.1038/s41593-018-0209-y

QuickBundles Garyfallidis et al.34 https://doi.org/10.3389/fnins.2012.00175

BotEvade task analyzed data This paper https://cellworld.github.io/paper.html

Robot and rodent tracker This paper https://doi.org/10.5281/zenodo.10308436

Robot control software This paper https://doi.org/10.5281/zenodo.10308436

Experiment controller This paper https://doi.org/10.5281/zenodo.10308436

Other

Cameras Basler, Sentech Cat#aca2040-180kmnir; Cat#STC-CMB401PCL

PIXCI CLI frame grabber PCI cards Epix https://www.epixinc.com/products/pixci_cl1.htm

Reconfigurable behavior arena This paper https://cellworld.github.io/paper.html

Robot This paper https://cellworld.github.io/paper.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Malcolm MacIver

(maciver@northwestern.edu).

Materials availability
Instructions to develop the specialized hardware of this study, including the cellworld arena and robot, are shown on the following

website: https://cellworld.github.io/. Otherwise, any other requests for materials can be directed to the lead contact.

Data and code availability
(1) All the data used in this study has been uploaded toGithub and can be accessed using the link in the resource table or from the

following website: https://cellworld.github.io/.

(2) Premade software packages utilized in this study are listed in the resource table. Custom code used for data analysis can be

accessed from the following website: https://cellworld.github.io/. Code developed for the cellworld system, such as those

used for the robot, camera system, and doors, were added to Github and can be accessed using the link in the resource table.

(3) Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

In this study, we used a cohort of eight adultMus musculus (C57BL/6, Charles Rivers Laboratories, 8–10 weeks of age at the start of

experiments) mice containing four females (labeled as FMM9, FMM10, FMM13, and FMM14) and four males (labeled as MMM10,

MMM11, MMM13, and MMM14). All mice were single-housed during experiments, at 28�C on a 12-h light:dark cycle with food
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provided ad libitum. All mice underwent water scheduling before the start of the training such that they were restricted to 75%of their

initial weight. Initial weight was determined by taking the average weight across 3 consecutive days under normal water and food

supplies. Once at the correct weight percentage, all mice ran one 30min experiment every weekday following the same experimental

phase sequence. All experimental procedures were in accordance with NIH guidelines and approved by the Northwestern Animal

Care and Use Committee.

METHOD DETAILS

The cellworld
Cellworld is approximately 2.34 m long at its widest section, consisting of a large open field labeled as the ‘‘arena’’ (Figure 2). The

arena is surrounded by 1.06 m tall walls (Figures 2A and 2B). The entire structure of cellworld is made primarily of laser-cut white

acrylic. The arena itself consists of 10 acrylic pieces engraved with a hexagonal grid consisting of 331 magnetic hexagon cells,

each roughly 11 cm apart from center to center (Figure 2A, inset). Two 11.11mmdiameter neodymiummagnets (D74-N52, K&JMag-

netics, Pipersville, PA, USA) are placed into each cell. A thin 3.175mm layer of clear acrylic followed by a 3.175mm layer of clear vinyl

cover the arena floor. Silicone sealant is applied to all corners and joining structures that themicemay interact with, containing debris

and allowing formore thorough cleaning. Obstacles are 17.7 cm tall andmade out of white acrylic. The base of the obstacle is the size

of a cell and has two neodymium magnets that are identical in size, type, and location to the cells of the arena floor. This attracts the

obstacle to the cells in the arena and lets us freely place and change the configuration of cellworld’s environment (Figure 2A).

There are two ‘‘chambers’’ at the start and end of the arena, and an external ‘‘mouse return chute’’ connects these chambers (Fig-

ure 2A). This forms a loop in which mice are introduced to the start chamber, traverse the arena, enter the end chamber, and traverse

back to the start through the return chute. Water rewards are located at each chamber as motivation for the water-scheduled mice.

Doors connected to a Raspberry Pi system (3B+, Raspberry Pi, Cambridge, England, UK) are placed at the entrances and exits of the

chambers. Both the doors and water feeder are fully autonomous. The doors are primarily built out of laser cut white acrylic and 3D-

printed polylactic acid (PLA) parts and use micro DC motors (50:1 6V micro metal gearmotor, Pololu, Las Vegas, NV, USA) in com-

bination with limit switches to set and detect the open and closed states of the door. The base of the door that interacts with mice is

made out of neoprene rubber material, which we have found to be strong enough to not be damaged by mouse manipulation but

pliable enough to not harmmice if the door were to close on them. Each water dispenser is controlled by a metal lick port connected

to a capacitive sensor (AT42QT1011, SparkFun, Boulder, CO, USA) and Raspberry Pi. When a mouse licks the spout, a capacitive

signal is sent to the Pis, opening a solenoid valve for a fixed amount of time. The time was calibrated so that 2 mL of water was given

per reward during a lick—a total of 4 mL of water is given per trial.

Lighting in cellworld was tuned to match crepuscular light conditions and provide the mice a more naturalistic environment (Fig-

ure 4E). This involved a combination of a LED full spectrum bulb (9-Watt LED Grow Light Bulb, General Electric, Boston, MA, USA)

with a purple gel light filter attached, a LED UV bulb (UV LED Black lights Bulb, SHGPODA, Shenzhen, Guangdong, China), and light-

ing soft boxes for light diffusion. This lighting configuration emulated the spectrum and illuminance of real-world measurements dur-

ing twilight with an energy peak around 400 nm and an overall illuminance of 2 lux.70,71 Two additional red lights (660 and 850 nm; LED

Red light therapy bulb, Wolezek LED, China) in soft boxes were added to improve camera visibility, but are likely to be far enough

outside the visual range of mice vision to not interfere with the crepuscular lighting.72,73

Camera system hardware
The computer vision system employs four advanced cameras (three Basler acA2040-180kmnir and one Sentech STC-CMB401PCL)

equipped with high-speed, low-latency, high-definition, and infrared CMOS sensors, which interface with the central computer via a

PIXCI CL1 frame grabber PCI cards (Epix, Inc., IL, USA) using CameraLink interface. Video frames were acquired as 10-bit grayscale

images at a resolution of 20403 2040 pixels at 120 fps, generating a dataset of approximately (4 cameras3 10 bit3 20403 20403

120 fps) 2.3 Gb/s. The central computer used to process the data stream from the cameras is equipped with the Ubuntu 22.04 oper-

ating system and features an Intel i9-10920X CPU, an NVIDIA GTX 3090 GPU, and 64GB of DDR4 RAM.

Unified field of view
The use of multiple cameras provides comprehensive coverage of the arena, capturing scenes that may otherwise be obscured.

However, this necessitates the real-time amalgamation of individual camera feeds into a unified viewwithminimal latency. Moreover,

the systemmust accurately and precisely correlate pixels to physical locations. Given that the computer vision system is the primary

data source, this is critical to safeguard interactions with animal subjects during trials and to maintain the integrity of the experiment

outcomes. Any error in this translation could potentially skew results and their interpretation.

In conventional image stitching, the acquisition order or arrangement of source images is typically unspecified. Consequently, the

stitching algorithmmust identify the overlapping regions between individual images. This task is commonly achieved through the use

of scale-invariant feature transform (SIFT)—a technique that operates on the gradient of the raw image and generates a series of

normalized Keypoint descriptors. Following the processing of all images, the lists of descriptors that exhibit the best correspondence
Cell Reports 43, 113671, February 27, 2024 17
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in a given image pair can be utilized to ascertain the degree of image overlap. An undesirable side effect of this approach is that the

plane into which images aremerged is computed on the fly to optimize the overlapping surface, thereby precluding the determination

of the correlation between a pixel and its physical location.

Achieving high-performance, pixel-accurate image stitching necessitated the development of a custom stitching process that con-

forms to the system’s accuracy and performance requirements. The resulting process employs a predefined destination plane that

matches a scaled version of the arena. Instead of matching features between raw images, it uses known locations which were an-

notated in the raw camera images, a process called homography. We then used those locations in the predefined plane and the an-

notated pixels corresponding to those locations to enforce their merging into the specified field of view (FOV). In contrast to the

default blending method, the cameras’ locations determine the arena section best covered by each camera. These modifications

enable the pre-computation and reuse of homographic information for all cameras, simplify the merging process, and ensure a

high-quality match between pixels in the composite image and their physical locations. Performance testing results indicate that

the new stitching process merges images in an average time of 8.3 ms without optimizations, which reduces to 1.8 ms with

CUDA optimizations. The homographic information is configured prior to the experiment execution and it is only updated if the cam-

eras undergo any displacement or rotation. The configuration process consists of the identification of a group of five known locations

from the arena in the captured images from each camera.

To verify the accuracy of the stitched, composite image, we took advantage of the physical features of the arena: all the cells in the

arena have 2 magnets, separated 3 cm apart and oriented vertically. These magnets are visible in the stitched image and their loca-

tion can be computed in the physical space. To verify that the perspective correction procedure during the stitching process did not

distort the true image, we manually annotated the locations of the magnets for every obstacle in the uncorrected images from the

cameras (indicated by the blue x in Figure S2A). We then used the transformation calculated from the camera calibration process

to generate the expected locations of the magnets based on our knowledge of their spacing and positioning. We found that the

reconstruction error from the pixel plane to the laboratory coordinate frame was on average 0.15% with a max of 0.45%

(Figures S2A and S2B).

Animal tracking
Prior to the introduction of the mouse, a stitched image of the arena is captured and stored as the background. Every time a new

frame is produced by the cameras, the stored background is subtracted from the current image to eliminate all the static features.

Upon completion, the resulting matrix is converted to binary by applying a threshold followed by two consecutive cycles of dilation-

erosion. The result is a binary matrix containing 0 values for static background pixels and 1 for dynamic features. Next, Color Con-

nected Components (CCC)69 is employed to group the islets of positive values and identify all the dynamic elements present in the

image, which are then individualized. This set of dynamic elements is referred to as ‘‘detection candidates’’. Finally, the system en-

deavors to match the candidates with a collection of profiles. The list of profiles is supplied as a configuration and is characterized by

a lower and upper bound limit for the pixel area of the candidate to be compared against. During trials, this parameter has been fine-

tuned to match different species of mice. Four distinct species were successfully tested: Mus musculus, Peromyscus maniculatus,

Peromyscus polionotus, and Onychomys torridus.

We estimated the latency and throughput of the tracking system by supplying a static image for mouse and robot detection, effec-

tively isolating processing time by removing image acquisition from the pipeline. Using standard computing hardware, we found that

our system reached a throughput of 120 fps, with a latency of less than 15 ms (measured as the time elapsed from image acquisition

to detection of both agents). We were able to improve performance using CUDA optimizations, reaching throughputs of 206 fps with

an average latency of 3.2 ms (Figure S2C).

Robot tracking
To enable real-time location and orientation tracking of the robot, three LEDs were added to its top, arranged in an isosceles triangle

configuration with the shortest side situated at the back as it is shown in Figure 3F. During the experiments, every time a new frame is

produced by the camera system, a brightness threshold is applied resulting in a binary matrix with values of 1 for brighter pixels and

0 for darker pixels. As done for tracking the mouse, CCCwas used to identify triangular pattern signals. If a signal consistent with the

specification is found, themiddle point between the shortest side (back) and the opposite vertex (front) is selected as the robot center

location. Then, the orientation is computed as the vector defined by this location and the front LED.

Video post-processing
For each experimental trial, cellworld produces three types of video. The primary video log presents the unified field of view, super-

imposes tracking markers of the robot and mouse, and incorporates all pertinent experimental information. The system also gener-

ates raw video that includes the unprocessed images from each of the four cameras. Additionally, a multi-view, subject-centered

video is produced, offering a cropped perspective of themouse as captured from all four camera angles. This subject-centered video

mitigates arena geometry interference during post-processing. Finally, raw video of the unprocessed images from all four cameras is

also saved. We used the multi-view, mouse-centered video data to train DeepLabCut for offline analysis of the mouse pose.35 This

allowed us to measure the gaze angle and head location for analysis of peeks (Figures 7B and 7C).
18 Cell Reports 43, 113671, February 27, 2024



Resource
ll

OPEN ACCESS
Robot hardware
The predator robot utilized in the experiments was custom-built. The skid-steer drive robot is powered by the (ESP32-WROOM-32D,

Espressif Systems, Shanghia, Shanghai, China) and is driven by two geared DC motors with magnetic encoders (Geared DC Motor

withMagnetic Encoder Outputs - 7 VDC 1:20 Ratio, Adafruit, NewYork, NewYork, USA). The robot was equippedwith three LEDs for

detection and localization via the camera sensors. The robot housed two custom printed circuit boards: one provided the supporting

circuitry for the microcontroller and the motor drivers (DRV8833PW, Texas Instruments, Dallas, Texas, USA), while the other powers

the LEDs and the driver used for the motor component of the puff mechanism.

Robot tracking perspective correction
An unexpected issue arising from the robot tracking setup pertains to the optical perspective of the cameras. Since the cameras are

affixed to the ceiling and the LED triangle is located at the height of the robot rather than at ground level, the triangle position in the

captured image shifts further away from the actual robot location the further the robot is located from the center of the image. This

introduces deviations of up to 3 cm in measurements, sufficient to prevent successful navigation through gaps of 9 cm given the

12 mm side clearance around the robot. To address this challenge, it was necessary to compute the real-world physical point cor-

responding to the center of the image captured by each camera at ground level using the previously described homography and the

known height of the robots and cameras. Based on the distance from the center of the camera plane, we calculated and accounted

for the perspective drift as a function of the robot’s position.

Robot controller
To control the robot in the complex environment, we established a hierarchical control system comprised of three levels: behavior,

path planning, and low-level motor control. During a trial, the high-level behavior controller selected robot destinations based on

tracking information from the camera system and the current state of the experiment (Figures 4A and 4B). Before each trial started,

the robot navigated to a spawn cell (a cell not visible to the mouse, in a region of the arena furthest from the start gate) and stopped.

These spawn constraints were implemented to ensure that the robot was not visible to the mouse from the start port with the gate

open, which was found to lead to long delays before the start of the trial. Then, once themouse entered the arena theMain process of

autonomousmotion began, during which the robot observed all regions in the arena that were not obstructed by obstacles relative to

its current location.

Its behavior switched between aggressive pursuit or random search depending on whether the mouse was visible or hidden to the

robot, respectively. The robot only entered pursuit mode if the visual ray between the mouse and robot passed outside of a buffer

zone around each obstacle that was 125% the standard obstacle size or after 0.5 s if the ray passed within the buffer zone. This al-

lowed the mouse to ‘‘peek’’ at the robot without being immediately pursued. This motion was interrupted by the Attack process if the

mouse was within 32 cm of the robot, during which the airpuff mechanism was triggered and released two aversive airpuffs in rapid

succession. To deter excessive anxiety in the mice and enable evasion post-attack, the time between attacks was regulated to be at

least 0.5 s apart, regardless of the distance between the mouse and robot.

The middle-level path planning controller was a hybrid proportional (P) and proportional integral derivative (PID) controller that fol-

lowed intermediate waypoints on trajectories created by a standard shortest-path algorithm (A*74) to reach the destinations the

behavior controller assigned. Finally, the low-level embedded controller received attack and speed commands via Wi-Fi. It utilized

encoder feedback for motor speed control and included a state machine to manage the airpuff mechanism. For the results shown in

this study, the robot autonomously navigated the task environment for 1,941 trials with no human intervention.

Robot path planning controller
The tracking system provided robot state (position and orientation) feedback for the path planning controller. During the control pro-

cess, the path planner selects the furthest visible cell to the robot on the robot’s desired path as an intermediate target. Then, a hybrid

P- and PID-controller:

uðtÞ =
 

1

ðaDqðtÞ Þ2+1

!
� PðDsðtÞÞ±PIDðDqðtÞÞ

is used to correct along-track error Ds (distance from target) and heading error Dq (difference between desired and actual heading),

respectively (Figure S2). To avoid collisions in cluttered environments with tight spaces, the 1
ðaDqðtÞÞ2+1 term prevents the robot from

translating too quickly if the Dq is large, where a is an arbitrary design parameter.

Additionally, to augment obstacle avoidance, a type of potential field-based obstacle avoidance algorithm works to repel the robot

from occlusions by perturbing the desired heading angle of the robot, where the distance between the objects largely influences the

magnitude of the perturbation. This algorithm is of the form

F
!

perturb =
XO
n = 1

weight

distancedecay
� direction
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where O represents all obstacles in front of and within 0.35 m of the robot. weight and decay are design parameters and distance is

the Euclidean distance between the robot and a given obstacle. The direction is a unit vector orthogonal to the robot’s heading

direction, pointing either left or right (from the robot’s perspective) depending on which side of the robot the obstacle is located.

Ultimately, this perturbation force works to repel the robot away from nearby obstacles by slightly offsetting the target location.

This perturbation value is updated at 50 Hz, whichmeans it is constantly adjusted based on the location of the robot in themap during

the path-following process.

Aversive airpuff
To accurately simulate the predatory behavior during the BotEvade task (Results section), we added a stimulusmodule (Figure 3C) to

the robot’s chassis. The module is comprised of a 16 g CO2 canister and inflator (Ultraflate, Genuine Innovations, San Luis Obispo,

CA, USA), an air nozzle, a brushed DC motor (120:1 Mini Plastic Gearmotor HP, Pololu, Las Vegas, Nevada, USA), a motor shaft

adapter, and 3D printed PLA parts. The custom PLA parts consist of a lever arm, a cam, and a robust framework that facilitates

efficient CO2 canister replacement and simple integration with the robot.

The airpuff mechanism of the stimulus module is triggered when the camera sensors detect that a mouse has crossed the attack

threshold (Figure 4A). For each attack event, the mechanism releases two successive airpuffs, each lasting approximately 100 ms,

with a 200 ms interval between them.

During each attack (sequence of two airpuffs), the motor rotates approximately 350� in one direction, is halted by a mechanical

stop, and then rotates the opposite direction back to its start position. Each CO2 canister is able to produce at least 30 strong airpuffs

(generally 15 attacks, assuming one attack per encounter; Video S1), which is more than enough to complete a 30 min session

without replacement. The canister is replaced at the end of each 30 min session to ensure consistency in puff strength across trials.

Spatial complexity metrics
A key aspect of the design of cellworld is reconfigurability guided by measures related to spatial complexity.

Cellworld entropy

The first and most basic measure of spatial complexity used in this and earlier work1 is Shannon entropy. This is computed with the

formula for the Shannon entropy75 of a binarized version of an arena, where each open cell is 0 and each cell with an occlusion is 1.

The resulting binary matrix is turned into a vector.

Entropy is determined by the following formula: e = � �
O
Clog2

�
O
C

�
+ C�O

C log2

�
C�O
C

��
where O is the number of occlusions, and C is

the total number of cells in the arena.

Shannon entropy is an effective complexity measure in the context of our random generative algorithm for cellworlds, as it presup-

poses no interdependence between individual elements. It is therefore insensitive to structured patterns such as the checkerboard

illustration in Figure S1: the probability of the checkerboard pattern occurring is the same as any other pattern: 1=2ð20320Þ. Despite its

seeming simplicity and intuitive orderliness, in the context of our generative algorithm and as measured by Shannon entropy, each

cell in the checkerboard is equally likely to be occluded or open, implying the checkerboard’s maximal entropy. In this case, our intu-

ition of the entropy of the checkerboard (low because orderly) comports better with a different concept of entropy, known as causally

conditioned entropy,76 which is not utilized in this study. Causally conditioned entropy considers the effect that the values of prior

elements have on the probabilities of subsequent ones. In the context of the checkerboard example, this approach would yield a

conditional entropy value of 0, as the probability of a square being occupied is determined entirely by the preceding square’s state.

Occupancy

The percentage of the space with obstacles to sensory perception ( O=C3 100, where O and C are as defined above). Figure S1A

plots Shannon entropy versus occupancy and maps where the various spaces we have considered fall on the curve. Similar to en-

tropy, occupancy places no demands on where the obstacles are. This measure is similar to the informal notion of how cluttered a

space is.

Network degree complexity

The network degree complexity1 provides a succinct description of the uncertainty associated with the sensory connection distance

between two agents in a space based on any two randomly chosen locations within that space. For this study, we solely consider

vision.

To compute the vision-based network degree complexity for a given configuration of cellworld, we translate it into a corresponding

graph. Each hexagonal cell represents a graph node. An edge exists between two nodes unless an obstacle blocks the line of sight

connecting the centers of the associated hexagonal cells in cellworld, implying the visual connection is disrupted. For instance, in an

obstacle-free cellworld configuration, every node connects to every other node. Consequently, the degree of each node, represent-

ing the number of its connecting edges, stands at 331, which matches the total cell count in cellworld.

To determine the Network Degree Complexity for a particular cellworld configuration, we first form a vector containing the relative

frequencies for each feasible degree value greater than zero, ranging from 1 to the total number of non-obstructed cells. Then, this

vector is used to compute the Network Degree Entropy. Finally, we normalize this value by the system’s maximum possible entropy,

which is achieved when all distinct degrees have equal probabilities.
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Network degree relative frequency

fðdÞ =
nd

D

Network Degree Entropy

H = �
XD

d = 1
fðdÞlogðfðdÞÞ
Network degree complexity

C =
H

log

�
1

D

�

In these formulas, nd represents the number of nodes with degree d in the graph. D is the maximum degree possible, equivalent to

the node count in the graph. The term � log
�
1
D

�
signifies the entropy when assuming a uniform frequency across all feasible degrees

( � PD
d = 1 1=D log

�
1
D

�
= � log

�
1
D

�
). In the earlier discussed fully connected scenario, the Network Degree Complexity is zero. How-

ever, as we introduce occlusions, the system exhibits a diverse combination of high-degree (large fields of view) and low-degree

(small fields of view) nodes, leading to an increase in complexity.

To compute the complexity of the natural environment presented in themain text, we utilized projections of the scaled-up cellworld

arena on to a satellite photo of a natural setting. We randomly placed the center of these projections within the image, provided the

center was at least 200 pixels from any image edge. The projection sizewas determined based on the observed cell-animal body ratio

from the physical setup andmeasurements of mice (body sizez 80mm) and cell size (z 12 cm) and the impala, a prey animal native

to the habitat (body size z 130 cm), and cell size (z 2 m).

The original color satellite photo, sourced from Google Maps, was first converted into 8-bit grayscale. Subsequently, it was binar-

ized using a midpoint threshold. This image, originally sized 819235067 pixels and representing a real-world area of 1836:77 m3

1136:1 m, was resized to 273031689 pixels. At this scale, every 3 pixels corresponds to z2 m, matching our chosen graph node

scale.

The center of each cell in the arena projection was then calculated. The immediate 9 pixels (a 333 pixel grid, equivalent to 23 2

meters) around each cell center were inspected to check for occlusion. A cell was deemed occluded if Q0:5 3 9S = 5 or more of these

pixels were black. We continued this process, randomly scattering projection centers across the image, until we identified 1000 pro-

jections with at least one occluded cell.

After obtaining the 1000 non-empty projections and transforming them into cellworld configurations, we applied the same tools

andmethods used for analyzing the complexity of maps generated by the generative model. This ensured a consistent and equitable

comparison.

Note that in our experimental work, we have manipulated the environment to minimize the contribution of other sensory modalities

besides vision. For example, we use a loud white noise generator to mask the sound of the robot, and frequently clean with ethanol to

remove all odor cues. Nonetheless, it is worth considering the likely effect of adding sensory modalities on network degree

complexity. To a first approximation, adding modalities will create additional edges in the graph. For example, imagine an owl

with precise auditory localization using vision and sound to attack a rodent. Portions of the environment blocking vision will be trans-

parent to the auditory system. This will create edges between nodes where there is no visual connectivity (and effectively reduce the

number of obstacles). In an initial situation of high clutter and low complexity, the addition of audition seems likely to increase

complexity. In an initial situation of medium clutter and high complexity, adding auditory perception could decrease complexity.

Lacunarity

Lacunarity (from the latin for lacuna = gap) was devised by Mandelbrot77 (p. 310) after he observed that two fractals with identical

fractal dimension could look very different. It has been applied as a multi-scale measure of spatial texture associated with patterns

of dispersal on landscapes.52,53 Lacunarity (L) measures the deviation of a pattern at a given spatial scale from translational invari-

ance.52 IfL is large at a given scale, then the pattern deviates a lot from translational invariance—the pattern would look different if a

block of the pattern at that spatial scale were shifted to a different location; similarly, ifL is small, then the pattern will look similar even

if that block of space is shifted. Figure S1 provides plots of the lacunarity values of several cellworlds and other cases, along with

summary statistics for Shannon entropy, network degree complexity, and a summary statistic for lacunarity, L-value, described

further below.

While chiefly used by landscape ecologists, it has also been applied for analyzing movement patterns of animals as in our case.78

To our knowledge, we are the first to apply it with specific reference to the physics of a given sensory modality, here vision, in the
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analysis of behavioral spaces. The gaps that we analyze using lacunarity are assumed/designed to be transparent to vision, and the

obstacles between the gaps are assumed/designed to be opaque.

To compute the two-dimensional (2D) vision-based lacunarity for our samples, we take a top-down view of a space and binarize the

image: cells occupied by obstacles to vision are ’10, and other cells are ’0’. Over a set of boxes varying in size, we compute the ratio of

the variance to the squaredmean of the sum of the elements within the box. Because lacunarity is usually plotted on a ln–ln scale, one

is added to this ratio so that lnðLÞ goes to zero asL goes to zero, givingLðrÞ = VarðSÞ
E½S�2 + 1, where r is the box size and S is the occupied

sites by the variable of interest—visually occlusive objects in our case. The lacunarity curves that arise (Figure S1G) gives information

as to what spatial scale a given landscape transitions from being inhomogeneous to homogeneous, where homogeneous means

lnðLÞz0, and that the space would be invariant to the corresponding box size of space being translated to another location.

For example, for the checkerboard pattern of Figure S1, the space is inhomogeneous up to the scale where the pattern repeats (at a

box size encompassing 2 x 2 squares, 183 x 183 pixels for our image); after that, the space is homogeneous. The lacunarity curve

therefore transitions from lnð1 =PÞ at the smallest box size, where P is the percentage of the cells occupied (or 50% in this case,

lnðLÞ = lnð2Þz0:69), to close to zero the size pattern repetition (lnðLÞ = lnð183Þz5:2). What lacunarity compactly communicates

is how sparse the space is at the finest scale of analysis (the curve starts at lnð1 =PÞ), and the evolution of the curve as the box size

increases to the full extent being analyzed. Therefore, mathematically the lacunarity must be unity so the lnðLÞ plot goes to zero. Be-

tween these two limits, the descent of the curve shows the spatial scale where the pattern of the space repeats, and how quickly that

transition occurs. For self-similar patterns, the lacunarity curve is a straight line on a log-log plot, with a slope equal to the fractal

dimension minus the Euclidean dimension. Our natural landscape sample has a near straight line slope, and its fractal dimension

isz 1.7 (interceptz 2.6: yzð1:7 � 2Þx + 2:6). Other landscape samples, and a survey of the lacunarity values found in different types

of aquatic and terrestrial biomes, are provided in earlier work.1

The integral of the lacunarity curve, the L-value,54 provides a quick index into the magnitude of the heterogeneous space. For two

spaces with similar occupancy (and thus starting near the same value ofL at the smallest box size), if the space transitions quickly to

invariance under translation, then the L-valuewill be small; if the transition occurs at larger spatial scales then the L-valuewill be large.

For example, consider the lacunarity curves for the natural landscape sample and the 0.5 Random configuration used in our ex-

periments, Figure S1G. As shown in the legend, the L-value for the natural landscape (6.4) is smaller than Random 0.5 (7.3) since the

natural landscape curve is below the Random curve. These two L-value are close, and so is the corresponding network degree

complexity of the two cases. In contrast, the L-value of the checkerboard pattern and hairpin maze are similar despite very different

network degree complexities (checkerboard at 0.0 and hairpin at 0.57), grouping them into the same relatively homogeneous space

category.

Limitations: There are several limitations to the sensory oriented lacunarity analysis as presented here. One is the assumption that

the profile of an obstacle from above properly represents how vision interacts with the object over its height. While true by design

for the obstacles in cellworld, this is not generally the case for natural obstacles as trees with their narrow bases and wide tops.

Some of the limitations of performing a lacunarity analysis of 3D landscapes using 2D projections can be circumvented by computing

3D lacunarity,79 but 3D scans of space are rarely available. Further, themetric has its roots in computational geometry and landscape

analysis, and the application to analyzing how a landscape is sensed and processed by an animal is challenged by the difficulty of

deciding on the relevant spatial scales, and the multiplicity of ways a landscape is sensed. Finally, the relevant perspective on the

space for the calculation is not always obvious. It can be argued that for an application where spatial complexity is being examined

through the lens of cognitive map formation, a top-down perspective such as the one used here may be appropriate1; for other forms

of spatial processing, other options may be considered.

Summary

To recap, we have discussed the use of cellworld entropy, occupancy, network degree complexity, and lacunarity. Each of these

quantities has different roles. The Shannon entropy is a practical measure that serves as a target in our generative model to produce

cellworlds. The occupancy is easily understood as something akin to how cluttered an environment is, and also gives us one point on

the lacunarity curve for the space, as it will be lnðLÞ = lnð1 =PÞ at the smallest spatial scale (termed grain), where P is occupancy.

Network degree complexity tells us how uncertain the distance of sensory connection will be for any two randomly chosen loca-

tions within the corresponding cellworld. But high uncertainty can arise within a relatively homogeneous space as well, as it does for

the hairpin maze. Finally, lacunarity gives us a multi-scale view of the invariance of a pattern to translation across spatial scales of

interest. If you’ve been in a space where you feel it looks the same in all directions, and the same when you move to a different loca-

tion, then at that spatial scale, the lnðLÞ value of the space is nearing zero. One could speculate that animals that use cognitive maps

will be challenged, and need external landmarks to navigate succesfully in such spaces. The area under the lacunarity curve, or

L-value, is useful when a single value to represent a space’s lacunarity is desired and can help group spaces with different network

degree complexity values but similar levels of spatial homogeneity.

Arena configurations
Leveraging the flexibility of cellworld, the system can emulate a wide range of established experimental designs. Furthermore, cell-

world can effectively reproduce environments that have ethological relevance with varying levels of visibility.

The creation of these diverse environments is realized through the use of automated tools specifically developed for this system.

Themodel for generating these environments relies on one primary variable: the target entropy level of the cellworld. This variable can
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bemanipulated through two parameters which include the number of occlusions within the arena, or the desired level of entropy. The

method starts with zero occlusions (O = 0) and incrementally adds occlusions until the specified entropy level is achieved.

Conversely, if the number of occlusions is explicitly given, this step can be bypassed. Finally, the process selects O cells randomly

and marks them as occluded.

To guarantee reproducibility, the algorithm accepts an optional seed parameter. When provided, this parameter secures a consis-

tent occlusion configuration across runs. However, in the absence of this parameter, the procedure will generate a unique occlusion

configuration for each execution.

Validation criteria

A configuration of obstacles is considered valid when it meets two essential conditions: First, all non-occluded or open cells should

be connected by an open path, ensuring no open cells are left in isolation. Second, the cells representing the entry and exit points

must be open, and at least one viable path between the entry and exit cells exists. The configuration generation process repeats until

the resulting arrangement passes the validation criteria.

Mouse experiments
Experimental conditions were determined by one of four sequential experimental phases—corridor training (CT), arena training (T),

robot (R), and post-robot (PR) phase—which the mice progressed through based on a combination of standardized and individual-

ized progress quotas. All mice followed the same phase sequence. During corridor training, a channel made frommodified vinyl gut-

ters was placed across the length of the arena, connecting the start and end doors. The CT phase lasted for only one day, but two

mice (FMM9 and FMM10) were given a second day in the corridor due to the lack of trials. The corridor was removed and obstacles

were introduced to match a specified mid-entropy configuration (named as ‘‘21_05’’; Random 0.5 in Figure 2C) for the T phase. Mice

roamed freely and progressed at their own rate. Once trial count wasR 15 over a 30 min session and the trial count plateaued, they

transitioned to the R phase where they performed the same task in the presence of the robot. Progressing past this phase also

required a plateau of their trial count; however, we added an additional two days of experiments with the robot after this stabilization

occurred. Stabilization was determined when, across a three-day window, the trial count each day did not exceed more than 20% of

the three-day trial count mean. As a result, mice needed to run a minimum of three days in the T phase before we could determine if a

plateauwas occurring andmice could progress. In addition, during the R phase, mice always had five days (three used for the plateau

check plus two additional days) where they were considered ‘‘acclimated’’ to the robot to match the required number of days for the

final phase (PR) where the robot was not present as a control.

The cohort of mice which experienced the no-obstacle condition (n = 2, Figure 6) underwent slightly modified training procedures

consisting of previous exposure to a mid-range entropy world with and without the robot before being exposed to the open-field

arena. Experiments in the open-field arena consisted of two days of self-motivated exploration without the robot and then two

days with the robot.

Between each 30-min experiment, all obstacles were removed from the arena, and the arena was fully wiped down using 100%

ethanol. At the end of each day, the arena, the six inches of the wall closest to the ground, and all the obstacles were wiped downwith

100% ethanol. The return chute and chambers were also cleaned using damp paper towel sprayed with Labsan C-Dox. During ex-

periments, white noise was played from a white noise generator (LectroFan Classic, Campbell, CA, USA) along a nearby wall at max

volume settings. Both the cleaning and white noise were applied to limit possible confounding effects from other sensory modalities

such as auditory and olfactory cues.

BotEvade task
Cellworld automation is dictated by a centralized script labeled as ‘‘experiment controller’’, which is able to receive and broadcast

experimental events from any device connected to it. In this case, the camera system, robot, and both chambers are connected to

this system. As an example of how the experiment controller connects devices when a mouse licks the lick port in the start chamber,

the main experiment controller receives a message from the start chamber’s Raspberry Pi. Subsequently, the experiment controller

broadcasts the ‘‘start trial’’ event to all connected components, signaling the camera system to begin saving video recordings, and

for all doors to initialize to the proper state.

BotEvade utilizes a sequence of these specified experiment events to dictate the logic and progression of the task (Figures 4A–4C).

To begin the task, a researcher will place a mouse in the start chamber and manually send out the ‘‘start experiment’’ event via a

terminal connected to the experiment controller. Using this terminal, any command can be manually sent to override or alter the pro-

gression of the task. In response to the experiment starting, all doors in cellworld will close, keeping the mouse contained in the start

chamber. After the ‘‘start trial’’ event is sent, the Raspberry Pi of the start chamber waits until the robot has reached its spawn location

before opening the door connecting the start chamber to the arena. Once the mouse passes a 12.7 cm radius (one cell) from the start

as detected by the camera system, a ‘‘prey enters arena’’ event is triggered where the door behind the mouse closes and the robot

beginsmoving. A ‘‘finish trial’’ event is broadcasted once themouse traverses the arena and reaches the lick port at the end chamber,

closing/opening doors to guide it into the return chute. Simultaneously, the camera system stops recording and saves the video

recording of the trial, and the robot begins to move to a spawn point for the next trial. The task will restart via the broadcast of

the ‘‘start trial’’ once the mouse reaches the lick port in the start chamber unless the experiment has progressed past 30 min. In

this case, the ‘‘finish experiment’’ event is sent and all the doors in the start chamber will close for mouse extraction.
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Behavioral analysis
We performed all behavioral analysis in Python using a custom-built library (https://pypi.org/project/cellworld/). Trials with tracking

errors were automatically detected and removed, while a small number of trials with robot malfunctions or experimenter intervention

were removed through manual inspection of the video logs. The remaining trials were counted toward the trial count for each 30 min

experiment.

Mouse and robot positions from online tracking were logged and used to perform all behavioral analyses. From the positional co-

ordinates of the logs, we computed instantaneous speed by calculating the distance over time between adjacent frames, then

smoothed the speed trace with a moving average of 10 frames (11 ms). Path length was computed as the sum of the distance be-

tween adjacent frames. To assess fear responses, we calculated the change in the distance between the robot and the mouse in a

window starting at the time of the airpuff and ending after 2 s. To determine whether any given distance trajectory was significantly

different than expected by chance, we employed a permutation procedure, where we randomly sampled n = 19,340 time points

across non-airpuff trajectories and computed the mouse-robot distance. We then computed the 97.5th percentiles of the random

samples, and any true distance trajectory which fell above these percentiles after 1 s post-attack was considered significant.

To determine whether mice varied their paths throughout various stages of the task, we used a clustering algorithm

(QuickBundles34) to identify stereotyped path choices. First, we interpolated the mouse path locations based on distance into

100 segments of equal lengths. The interpolated paths were then clustered using QuickBundles with the following parameters: min-

imum number of clusters = 1, distance threshold from cluster centroid = 23.4 cm, andminimum number of paths in a cluster = 10%of

total trajectories being considered. During the clustering process, the distance of each interpolated path is compared to each existing

cluster’s centroids to identify the minimum distance. If the distance to the closest cluster is less than the distance threshold, the path

is added to that cluster and updates the cluster’s centroid. If the distance exceeds the threshold, a new cluster is created for that

path. Clusters that contain fewer paths than the minimum allowed (10% of trajectories in analysis set) are discarded at the end of

the process, and those paths are considered unclustered. For this analysis, we pooled all paths for each mouse within each phase

of the task (T, R, and PR phases) and clustered them separately. We then quantified path diversity in each phase by considering the

number of clusters and the average distance to the nearest cluster for each mouse.

To detect when the mouse paused, we developed a simple algorithm which required two parameters: a distance threshold and

pause duration. A pause was defined as the frames where the mouse’s location remains within a given radius (distance threshold),

for a given number of frames (pause duration parameter). For this analysis, the distance threshold was set to a radius of 2.5 cm and

pause duration was set to 0.5 s.

Airpuff aversion control experiment
For analysis of fear response to the airpuff stimuli on a moving robot, we ran two naive mice in an independent control experiment

where the airpuff on the robot was disabled. Both mice went through three experimental phases within an open-field arena with no

obstacles. The arena doors remained closed, containing the mice inside the arena, and the mice were allowed to freely roam the

arena for the duration of each daily 30 min experiment. The cleaning procedure and white noise were identical to the main cohort

experiments. The first phase served to acclimate the naive mouse to the robot and the open field environment. The robot was sta-

tionary throughout the entirety of this phase which only lasted for one day. In the next two sessions, the robot began to move and

pursue themouse as in previous experiments, but the robot’s puffingmechanismwas disabled. For the last phase, the robot’s puffing

mechanismwas enabled again while the robot pursued themouse. The no puff phase lasted for 2 days while the puffing phase lasted

for 1 day.

We quantified the change in response between the puff disabled and puff enabled session by measuring the distance between the

robot and the mouse 1–2 s after the mouse entered the attack threshold (32 cm). These data were then averaged over that time win-

dow for each puff event to calculate statistical significance (Figure S3B).

QUANTIFICATION AND STATISTICAL ANALYSIS

To calculate significance across the different experimental phases we first averaged each statistic per mouse per experimental

phase. Due to the small sample size (n = 8) and skewed distribution of many of the outcome measures, we used non-parametric

Kruskal-Wallis (KW) tests followed by post-hoc Dunn’s tests between experimental conditions for each mouse. In all post-hoc tests,

the p values were adjusted using Bonferonni correction (padj). To calculate significant differences between puff and no-puff condi-

tions in the control experiment (Figure S3), we used aWilcoxon rank-sum test on the distributions distance from the robot at the time

of the puff after puff-disabled and puff-enabled attacks. The statistical details of all experiments are reported in the Results section or

in the legend of the associated figure, where appropriate. To indicate the results of statistical tests in figure panels, asterisks indicate

the following significance levels: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. No significance is indicated by n.s.

To account for potential gender differences we performed non-parametric Wilcoxon rank-sum tests to determine whether male

and female mice differed on the task performance metrics considered in Figure 6. We found that gender did not significantly affect

the number of trials performed (p = 0:39), path length (p = 0:08), average moving speed (p = 0:56), or the number of pauses per

trial while in the arena (p = 0:56).
24 Cell Reports 43, 113671, February 27, 2024

https://pypi.org/project/cellworld/

	A robot-rodent interaction arena with adjustable spatial complexity for ethologically relevant behavioral studies
	Introduction
	Results
	Creating naturally inspired spaces with a reconfigurable arena
	A multiview camera system for continuous tracking in occluded spaces
	An autonomous mobile agent coupled to animal behavior
	A predator-prey inspired behavioral task disrupts stereotyped navigation
	Presence of a robot in a spatially complex environment elicits complex behaviors

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Method details
	The cellworld
	Camera system hardware
	Unified field of view
	Animal tracking
	Robot tracking
	Video post-processing
	Robot hardware
	Robot tracking perspective correction
	Robot controller
	Robot path planning controller
	Aversive airpuff
	Spatial complexity metrics
	Cellworld entropy
	Occupancy
	Network degree complexity

	Network degree relative frequency
	Network Degree Entropy
	Network degree complexity
	Lacunarity
	Summary

	Arena configurations
	Validation criteria

	Mouse experiments
	BotEvade task
	Behavioral analysis
	Airpuff aversion control experiment

	Quantification and statistical analysis



