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Categorization is an essential task for sensory perception. Individuals learn category labels using a 
variety of strategies to ensure that sensory signals, such as sounds or images, can be assigned to 
proper categories. Categories are often learned on the basis of extreme examples, and the boundary 
between categories can differ among individuals. The trajectories for learning also differ among 
individuals, as different individuals rely on different strategies, such as repeating or alternating 
choices. However, little is understood about the relationship between individual learning trajectories 
and learned categorization. To study this relationship, we trained mice to categorize auditory stimuli 
into two categories using a two-alternative forced choice task. Because the mice took several weeks 
to learn the task, we were able to quantify the time course of individual strategies and how they relate 
to how mice categorize stimuli around the categorization boundary. Different mice exhibited different 
trajectories while learning the task. Mice displayed preferences for a specific category, manifested by a 
choice bias in their responses, but this bias drifted with learning. We found that this drift in choice bias 
correlated with variability in the category boundary for sounds with ambiguous category membership. 
Next, we asked how stimulus-independent, individual-specific strategies informed learning. We 
found that the tendency to repeat choices, which is a form of perseveration, contributed to long-term 
learning. These results indicate that long-term trends in individual strategies during category learning 
affect learned category boundaries.

Categorization is a basic cognitive task that is fundamental to perception and everyday behavior1–3. Individuals 
apply discrete category labels to incoming sensory inputs, including images, sounds or perceived movements, to 
understand and respond to our environment. Distinguishing pictures of cats from those of dogs or recognizing 
faces of specific individuals are standard examples of visual categorization and are fundamental to visual 
cognition. Categorization is also essential to auditory communication, be it distinguishing between vocalizations 
of different species, or assigning speech sounds to different syllables or words. In some situations, auditory 
category labels are learned through exposure and practice4, for example when learning a new language as an 
adult.

The process of category learning can take a long time and differ in the behavioral strategies used between 
different individuals5. Initial biases (such as favoring /r/ sounds over /l/ sounds) and a variety of potential 
strategies (such as repeatedly sampling information from one category and ignoring a second category as opposed 
to alternating between the two categories) result in a range of learning trajectories. These trajectories shape 
the learning outcome, for example categorization accuracy6. However, much of the research on categorization 
focuses on the behavior of subjects that have already learned the task, rarely quantifying the extent to which that 
behavior is informed by individual differences in category learning.

Categorization of novel or category-ambiguous stimuli is informed by the way that the category information 
was acquired7. Throughout category learning, choices of category labels become more correlated with the 
category of the stimulus. At the same time, individuals exhibit individual biases in the choice, preferring one 
category over another8. These biases can drift in the process of learning, even in trained subjects. This reflects 
changes in categorization strategy9, and can be linked to an exploration/exploitation trade-off10,11. However, 
the quantitative relationship between individual learning trajectories and learned categorization is not well-
understood. Here, we focus on the link between drift in choice bias during category learning and the variability 
in category boundaries. Specifically, we hypothesized that inter-subject variability of choice bias during learning 
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correlates with category-boundary consistency across testing sessions. Analyzing how individual strategies 
inform performance outcomes will enrich our understanding of the underlying mechanisms of category learning.

To establish a quantitative relationship between individual strategies and outcomes of category learning, we 
trained mice to categorize auditory stimuli and to report their choices while performing a two-alternative forced 
choice (2AFC) task. Mice were trained on extreme high and low tone frequencies and tested on intermediate 
tone frequencies. Using a machine-learning approach, we extracted the stimulus-independent components of 
the decision-making process during learning and studied their relationship with categorization parameters after 
learning. We found that the drift in the choice bias during training is predictive of the stability of the category 
boundary across sessions when we presented mice with stimuli from ambiguous categories. We additionally 
hypothesized that stimulus-independent strategies serve as major factors contributing to long-term learning. 
We found that variability in the drift of the trajectories during early learning could be captured by a model that 
allowed for perseverative behavior. These results demonstrate that individual stimulus-independent components 
of learning trajectories are an essential component of category learning, relate to learning outcomes, and should 
be considered in future categorization studies.

Results
We trained mice to categorize auditory stimuli and to report their category choices with a 2AFC task12. In 
early parts of training, mice categorized tone bursts that were uniformly drawn from either a low-frequency 
distribution (6–10 kHz) or a high-frequency distribution (17–28 kHz). Each of these training stimulus sets 
consisted of 10 tone bursts with central frequencies spanning the respective frequency range. Mice turned a 
wheel either clockwise or counterclockwise to indicate the category membership of a stimulus (Fig. 1A). On 
average, it took the mice 6844 ± 673 (N = 19) trials to reach our pre-defined testing threshold of 75% accuracy for 
each category (Fig. 1D). During training, mice had a (non-significant) tendency to choose low-category stimuli 
(average accuracy asymmetry = 9.8% ± 12.7% toward the low category; N = 19, Fig. 1D). Across mice, there was 
not any consistent initial category-accuracy asymmetry (average initial accuracy asymmetry = 3.2% ± 30.3% 
toward the low category stimuli; t = −0.253, p = 0.803, One-sample Student’s t-test, N = 19). Once mice reached 
the testing stage, we introduced 10 novel tone bursts with frequency values between the two training frequency 
regions (10–17 kHz) (Fig. 1C). These stimuli were presented on 20% of trials. We did not reward behavioral 
responses to these test stimuli.

The auditory cortex (ACx) is known to play a role in auditory perceptual decision-making and learning13,14. 
There is significant evidence that neurons in the auditory cortex encode stimulus category membership15–18. 
There is also evidence that ACx neurons can encode behavioral choice19,20. To test whether the ACx is involved 
in our task, we bilaterally inactivated the ACx of trained, behaving mice using the GABA-A receptor agonist 
muscimol (N = 20 session comparisons from 6 mice, Fig. 1E, F). We found that when we inactivated the ACx, 
the mouse performance accuracy for the trained stimulus regions decreased significantly by 11% ± 2% (s = 11, 
p = 0.0002, Wilcoxon sign-rank test), indicating the ACx does play a role in our auditory categorization task.

To study the relationship between the trajectories of the categorization behavior of the mice during learning 
and categorization of stimuli with ambiguous category memberships, we initially focused on the choice bias 
in the decision process. In our task, the choice bias was not limited to one direction throughout learning (Fig. 
1D). Across all mice, 22.9% ± 11.1% (N = 19) of sessions had choice biases in the opposite direction from each 
mouse’s overall choice bias. This indicates that the choice bias might reflect a dynamic preference that could 
inform the location of the internal category boundary. We isolated the choice bias using a generalized linear 
model (GLM) (Fig. 2A). This extracted GLM choice bias specifically captures stimulus-independent drift in 
category preference. We found that mice with more (less) variability in the GLM choice bias during the final 
training session had more (less) variability in their category boundary during the first five testing sessions (ρ = 
0.67, p = 0.002, Spearman correlation) (Fig. 2D). If the variability in GLM choice bias reflected a generally noisy 
or inconsistent psychometric curve, then it would be correlated with variability in the other parameters of the 
standard model as well. However, the drift in the GLM choice bias was not significantly correlated (at the p = 
0.05 threshold) with variability in the psychometric slope (ρ = 0.44, p = 0.07, Spearman correlation), variability 
in the psychometric guess rate (ρ = 0.057, p = 0.83, Spearman correlation), and variability in the psychometric 
lapse rate (ρ = 0.14, p = 0.57, Spearman correlation) (Fig. 2E–G). These results indicate that choice bias during 
category learning reflects a dynamic preference that mice rely on when drawing category boundaries.

We found that the variability in the GLM choice bias at the end of training was predictive of category 
boundary stability across sessions. Therefore, we focused on extracting patterns in choice bias during learning 
to understand what drives inter-subject variability in the decision-making process. We generated trajectories 
for each mouse’s choice bias across learning and applied dynamic time-warping (DTW) clustering to identify 
the two most prominent clusters (Fig. 3A). We found that the key aspect that differentiates the two clusters 
is whether the initial choice bias persists throughout learning or if the choice bias drifts towards the initially 
unpreferred category during the early stage of learning (Fig. 3B). The distinction between “stationary” and 
“drifting” trajectories, respectively, is reflected in the trajectories for the response probabilities to each category 
throughout learning. We fit a linear regression model to each trajectory and extracted the best-fitting slopes. 
“Drifting” trajectories had significantly more negative slopes compared to “Stationary” trajectories (s = 71.0, p = 
0.013, one-sided Mann-Whitney U-test). On average, mice that exhibited stationary choice bias trajectories had 
category performance that increased symmetrically from their initial preference. As a result, their choice bias 
at the end of learning matched their initial choice bias (Fig. 3C). Mice that had drifting choice bias trajectories, 
however, exhibited category performance that increased asymmetrically, often resulting in an eventual choice 
bias in the opposite direction from the initial choice bias (Fig. 3D). The results of our clustering indicate that 
the extent to which the choice bias drifts throughout early learning is a key element in differentiating learning 
patterns.

Scientific Reports |         (2025) 15:2984 2| https://doi.org/10.1038/s41598-024-82219-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 1.  Mouse accuracy on auditory categorization task, which is driven by the auditory cortex, improves 
over weeks. (A) Mice initiated each trial by holding the wheel. We presented a tone burst for 500 ms. After a 
100 ms delay, the mice were allowed to indicate their choice: a counterclockwise turn indicated that the tone 
burst was in the “low-frequency” category, whereas a clockwise turn indicated a “high-frequency” category 
choice. We rewarded the mice on correct trials when the tones were from the low-frequency or high-frequency 
distribution. Incorrect trials led to a 6 s timeout. For probe tones during the testing stage, the mice were 
rewarded randomly on a trial-by-trial basis. (B) Example learning trajectory. The probability that the mouse 
turns in the correct direction for high- and low-frequency sounds will increase over time. (C) Example 
psychometric performance on the testing stage. (D) Top left: 7 sample mice are shown. Top right: Mice took 
∼ 7000 trials to reach 75% accuracy for each category choice, which was our threshold to start the testing 
phase with the probe tones. Whiskers represent quartile ranges. Bottom left: Preferred direction (i.e., higher 
choice accuracy) often switched across sessions. Bottom right: On average, mice tended to have slightly higher 
accuracy for low-category stimuli compared to high-category stimuli. Whiskers represent quartile ranges. (E) 
Example muscimol and control behavioral data for a single mouse. Each “Set” represents consecutive control 
and inactivation sessions. (F) During the testing stage, we found that bilateral muscimol inactivation of ACx 
decreased performance accuracy. In all plots: n.s., not significant; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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Figure 2.  Choice bias during category learning reflects a dynamic preference that mice rely on when 
drawing category boundaries. (A) The PsyTrack model extracts dynamic weights for each category as well 
as a dynamic choice bias term. Error bars represent 95% CIs. Right: The original traces for the category-
conditioned accuracies throughout learning can be estimated from the extracted weights by taking the logistic 
transformation of the weights. (B) The session-level behavioral choice data at three different points throughout 
learning. (C) Visualization of psychometric curve parameters. The animal behavior is modeled as a weighted 
average of attending behavior (as captured by a sigmoid) and lapsing behavior, which is stimulus-independent. 
(D) Left: The drift over the final day of training is correlated with across-mouse variability in the location of 
the psychometric threshold during the first 5 testing days. Center: Two examples of isolated GLM choice bias 
traces. Top panel shows a trace with high variability, bottom panel shows a trace with low variability. Right: 
Psychometric curves from the testing stage for the same mice, demonstrating that a mouse with higher (lower) 
variability in dynamic weight has higher (lower) variability in threshold location. Thin lines are individual 
sessions, thick line is generated from average parameters across the first five sessions. (E) The drift over the 
final day of training is not significantly correlated with the across-mouse variability in the psychometric slope. 
(F) The drift over the final day of training is not significantly correlated with the across-mouse variability in 
the psychometric guess rate. (G) The drift over the final day of training is not significantly correlated with the 
across-mouse variability in the psychometric lapse rate. In all plots: n.s., not significant; *p<0.05; **p<0.01; 
***p<0.001; ****p<0.0001.
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Next, we focused on what might drive individual variability in choice bias drift throughout learning. At the 
beginning of learning, subjects might not have a clear idea of the two stimulus categories. We hypothesized that 
the choice bias drift exhibited during early learning may be due to behavior that is independent of the presented 
stimulus. Because we trained our mice using reinforcement on every trial, we chose to use a reinforcement 
learning framework to probe this question (Fig. 4A). The first model, which we refer to as the “choice-history” 
model, tested the extent to which the subjects update their associations based on their previous choice, 
independent of the presented stimulus. It has four free parameters: (1) a learning rate α that dictates how quickly 
the agent learns, (2) an overall bias b toward one of the two categories, (3) an initial bias Q0 toward one of the 
two categories, and (4) a choice-history parameter β (Fig. 4A, right panels). We also considered a null model 
in the same model family in which the choice-history parameter is removed (which we refer to as the “simple” 
model (Fig. 4A, left panels). Our hypothesis suggests that the choice-history model would be required to capture 

Figure 3.  Early choice bias drift differentiates learning patterns. (A) Left: Category-conditioned decision 
probabilities for the initially unpreferred category for each mouse. Center: Category-conditioned decision 
probabilities for initially preferred stimulus for each mouse. Right: Choice bias trajectory across learning 
for each mouse. Green curves indicate membership in “Stationary” cluster while purple coloring indicates 
membership in “Drifting” cluster. (B) Average choice bias trajectory for each cluster. The average “Drifting” 
preference trajectory switches from the initially preferred category to the initially unpreferred category, 
whereas the average “Stationary” trajectory maintains the same category preference throughout learning. 
The drift away from the initial preference is highlighted in yellow. (C) Average category-conditioned decision 
probabilities for mice labeled as having “Stationary” trajectories. On average, category performance increases 
symmetrically from initial preference. (D) Average category-conditioned decision probabilities for mice 
labeled as having “Drifting” trajectories. On average, category performance increases asymmetrically, with 
a stimulus-independent shift in preference away from the initially preferred category. All trajectories were 
subsampled to 100 data points post-clustering for visualization. In all panels: error bars represent 95% CIs.
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Figure 4.  Group differences in choice bias drift during learning are due to subject-level variability in 
perseveration. (A) Top: Schematic of reinforcement learning algorithm design. Second row: Equations 
governing agent behavior in response to stimuli for Simple Model (Left) and Choice-History Model with e−β  
= 0.5 (Right). Third row: Example Q-Updating and logistic transformation in response to a correct “High” 
category trial. Left: For the Simple Model, only qH  is updated. Right: For the Choice-History Model, qL is 
also updated, resulting in a slight bias towards the rewarded turn direction (“High”). Fourth row: Example 
category-conditioned probability updating for Simple Model (Left) and Choice-History Model with e−β  = 0.5 
(Right) to the same series of stimuli and choices. A correlation between the category-conditioned probabilities 
emerges in the Choice-History Model. Fifth row: Model simulations based on parameters fit to example mouse 
better fit by Simple Model (Left) or Choice-History Model (Right). (B) Simple model fits to trajectories that 
were clustered by the DTW as having “drifting choice bias” were better improved by the addition of the choice-
history parameters compared to trajectories that were clustered by the DTW as having “non-drifting choice 
bias”. Improvement was quantified by comparing the Bayesian Information Criterion (BIC) of the two fits. A 
lower BIC indicates a better model fit. (C) Diagram explaining Win-Stay and Lose-Switch effects. (D) Choice-
history parameter captured inter-subject variability in choice-history. (E) Choice-history parameter captured 
inter-subject variability in tendency to switch after an incorrect trial. (F) Choice-history parameter was not 
correlated with behavior following a correct trial. (G) Mice tended to exhibit more lose-switch behavior during 
their final 3 training sessions compared to their first three training sessions. (H) Mice tended to exhibit less 
win-stay behavior during their final 3 training sessions compared to their first three training sessions. (I) 
Lose-switch behavior increases as a function of training session number. (J) Win-switch behavior decreases as 
a function of training session number. In (I,J) Grey lines indicate individual trend lines from OLS model with 
different intercepts across mice. Colors indicate specific mouse, N = 19 mice. In all plots: n.s., not significant; 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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the behavior of mice that exhibit choice bias drift during early learning. Mouse trajectories that were labeled as 
not exhibiting choice bias drift would be better fit by the simple model. The fitting procedure maximizes the 
number of behavioral trials correctly predicted by the model (see “Methods”). To compare models from the 
same family but with different numbers of parameters, we compared the Bayesian Information Criterion (BIC) 
scores, which include a penalty for additional parameters. As we predicted, the behavioral performance of mice 
that were labeled as exhibiting choice bias drift during learning was more likely to be better fit by the choice-
history model compared to mice not exhibiting choice bias drift (5/8 vs 0/9, p = 0.002, Prop Z-Test over BIC 
comparisons, Fig. 4B).

To determine what elements of choice history the choice-history model captures, we calculated each mouse’s 
average probability of responding according to the previous choice and reward (either “staying” after a win 
(win-stay), or “switching” after a loss (lose-switch), Fig. 4C). This value is strongly negatively correlated with 
the choice-history parameter (ρ = -0.67, p = 0.002, Spearman correlation), indicating that the choice-history 
parameter captured switching after a win (win-switch) or staying after a loss (lose-stay) (Fig. 4D). We found 
that the choice-history parameter was correlated with lose-stay behavior (ρ = −0.71, p = 0.001, Spearman 
correlation), but not win-switch (ρ = −0.07, p = 0.78, Spearman correlation, Fig. 4E, F).

Lose-stay behavior is a form of perseverative behavior21. Perseverative behavior refers to a choice bias toward 
repeating the previous decision. Whereas win-stay behavior is also perseverative as the choices are repeated, our 
choice-history model specifically captures perseveration in response to incorrect trials (Fig. 4E, F). Analyzing the 
extent of choice-history correlations across sessions revealed more perseverative behavior following incorrect 
trials in early sessions (first three sessions) compared to late sessions (final three sessions, s = 1, p = 7.6e−06, 
Wilcoxon Sign-Rank) and more win-stay behavior in early sessions compared to late sessions (s = 35, p = 0.014, 
Wilcoxon Sign-Rank, Fig. 4G, H). This high rate of perseveration following incorrect trials during early learning 
matched the region of learning where the choice bias drift occurs (Fig. 3B). In addition, we found that the 
perseverative behavior following incorrect trials increased with the number of sessions completed (t = 13.6, p 
= 4.0e−35, OLS model, Fig. 4I), while the win-stay behavior decreased with the number of sessions completed 
(t = −6.0, p = 5.2e−09, OLS model, Fig. 4J). Our results support the hypothesis that the group differences in 
choice bias drift during learning are due to subject-level variability in attention to choice history, specifically 
perseverative tendencies to repeat the losing choice following incorrect trials.

Discussion
We examined the relationship between the learning trajectories of mice for an auditory categorization task 
and resulting categorization parameters. This task was designed to encourage stimulus abstraction by exposing 
subjects to categories consisting of a range of tone burst stimuli (Fig. 1). Different mice exhibited different 
patterns in their learning trajectories (Fig. 3). Mice varied in their choice bias before they were introduced 
to the category-ambiguous stimuli (Fig. 3). The mouse behavior could be interpreted as a combination of 

Comparison Figure N Mean Stand. dev. Test Statistic P-value

Initial bias significance 1D 19 mice -0.032 0.303 One-sample 
Student’s t-test −0.253 0.803

Accuracy of control vs. muscimol 1F 20 session pairs, 
6 mice Control: 0.92, musc: 0.80 Control: 0.04, musc: 0.12 Wilcoxon sign-

rank test 11.0 2e−04

Choice bias drift vs. psychometric threshold 
variability 2C 18 mice Training drift: 0.13, thresh. 

var: 0.03
Training drift: 0.09, thresh. 
var: 0.02 Spearman’s rho 0.67 2e−03

Choice bias drift vs. psychometric slope 
variability 2D 18 mice Training drift: 0.13, slope. 

var: 0.07
Training drift: 0.09, slope. 
var: 0.03 Spearman’s rho 0.437 0.08

Choice bias drift vs. psychometric guess rate 
variability 2E 18 mice Training drift: 0.13, GR. 

var: 0.12
Training drift: 0.09, GR. 
var: 0.05 Spearman’s rho 0.057 0.823

Choice bias drift vs. psychometric lapse rate 
variability 2F 18 mice Training drift: 0.13, LR. 

var: 0.05
Training drift: 0.09, LR. 
var: 0.03 Spearman’s rho 0.143 0.57

Drifting slope vs stationary 3B
Drifting: 8 mice, 
stationary: 9 
mice

Drifting: −1.8e−03, 
stationary: −3.5e−04

Drifting: 1.2e−03, 
stationary: 1.1e−03

One-sided Mann-
Whitney U-test 71.0 0.013

Drifting BIC comparison vs stationary 4B
Drifting: 8 mice, 
stationary: 9 
mice

N/A N/A Proportions Z-test 2.8 4e−03

Beta term vs history-dependent choice 
probability 4D 19 mice Beta term: 0.55, HD: 0.49 Beta term: 0.38, HD: 0.02 Spearman’s rho −0.67 2e−03

Beta term vs lose-switch probability 4E 19 mice Beta term: 0.55, LS: 0.48 Beta term: 0.38, LS: 0.06 Spearman’s rho −0.7 1e−03

Beta term vs win-stay probability 4F 19 mice Beta term: 0.55, WS: 0.50 Beta term: 0.38, WS: 0.02 Spearman’s rho −0.07 0.78

Lose-switch early vs late 4G 19 mice Early: 0.41, late: 0.61 Early: 0.08, late: 0.09 Wilcoxon sign-
rank test 1.0 7.6e−06

Win-stay early vs late 4H 19 mice Early: 0.51, late: 0.48 Early: 0.04, late: 0.03 Wilcoxon sign-
rank test 35.0 0.014

Lose-switch probability vs session number 4I 19 mice LSP: 0.51, sess: 13.4 LSP: 0.13, sess: 8.6 OLS model 13.6 4e−35

Win-stay probability vs session number 4J 19 mice WSP: 0.50, sess: 13.4 WSP: 0.051, sess: 8.6 OLS model −6.0 5.2e−09

Table 1.  Statistical analyses.
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reward-driven learning and choice bias (Fig. 2). We found that inter-individual variability in this choice bias 
was predictive of the stability of the category boundary location (Fig. 2), suggesting that the learning dynamics 
contribute to learned category boundaries. Next, to study individual variability in behavioral dynamics during 
learning, we applied time-series clustering to the learning trajectories of mice. Our results identified across-
learning drift in bias as a prominent pattern in learning dynamics (Fig. 3). This suggests that that both rewards 
and choice biases shape the learning of categories and influence the resulting category boundaries. Furthermore, 
this drift in bias and individual response variability depended on the history of the mouse’s previous responses, 
specifically the tendency to perseverate following incorrect decisions (Fig. 4). These results indicate that long-
term trends in choice bias during category learning reflect a preference that the mice rely on when drawing 
category boundaries.

Individuals often learn and build category rules through trial and error, using a variety of strategies to ensure 
that incoming stimuli are assigned their proper labels. Some of these strategies, such as basing responses on 
previous choices or previous reward contingencies, are at least partially driven by factors independent from 
the stimuli presented. Although recent work has extracted behavioral significance from stimulus-independent 
dynamics within sessions in trained rodents10, it was previously unknown whether there was a behavioral 
significance to the long-term trajectories of this stimulus-independent component. Here, we find that the 
stimulus-independent components of learning trajectories inform resulting category boundaries. In addition, 
whereas it has been demonstrated that elements of behavior during early learning are predictive of future 
performance on the same stimuli5, we additionally find that individual variability in behavioral dynamics during 
learning informs the categorization of novel category-ambiguous stimuli.

An important implication of this study is that the preference that drives categorization behavior to category-
ambiguous stimuli can be tracked throughout learning. In real-world scenarios, subjects learn to categorize not 
just for the sake of being rewarded for correct categorization to known stimuli but to more efficiently understand 
and interact with their environment22. One caveat in studying rodent behavior is that we cannot directly ask 
them to assign labels, rather we train them to respond to stimuli with distinct movements. In our task, we 
trained them to turn the wheel clockwise and counterclockwise. This is not unlike a table tennis player learning 
to use a forehand or backhand stroke. As a table tennis player improves their forehand and backhand strokes, 
their behavior in response to shots in front of their body changes and they exhibit individual variability in stroke 
preference. A subject skilled in both strokes but who considers their backhand a more consistent option might 
exhibit a preference towards using that stroke in response to shots with ambiguous trajectories. A player who 
originally preferred their backhand but, through training, built up confidence in their forehand, might exhibit 
a preference towards using their forehand in response to ambiguous shots because of that recently acquired 
confidence. Here, we established a method for tracking the development of category preferences for individual 
subjects as they interact with and learn categories.

We found that choice bias can be traced throughout learning and is predictive of categorization behavior. 
The long-term trend in this bias is a notable pattern across mice which our model attributes to initial bias 
and weighting of previous choices. However, variability driving this initial bias (such as handedness, position, 
and strategies picked up during early habituation) are beyond the scope of this work. In addition, although 
our model identified perseverative behavior as involved in the long-term trend, recent work found dynamic 
bias at a shorter time-scale and in trained animals10,11 as linked to an exploration vs. exploitation process. The 
relationship between choice bias during learning and category boundaries that we found is consistent with the 
interpretation of exploration being reflected in the dynamic choice bias. As both choice-history weighting and 
exploration would be able to account for the dynamics we encountered, future work should explore designing a 
new task condition where reward effects are asymmetrically manipulated during training to determine whether 
the choice bias is driven by reward effects.

Humans learning novel categories with feedback tend to repeatedly probe the same category as opposed 
to interleaving queries about multiple categories, and predict higher future performance when practicing in 
this way6. Similarly, mice that exhibit long-term drift in choice bias may be alternating periods of “studying” 
the outcomes of the two response options: clockwise and counterclockwise wheel turns. during early learning, 
this repeated study would result in perseveration, the tendency to repeat previous choices. We find that win-
stay behavior tends to decrease in prevalence throughout learning, while lose-switch behavior increases in 
prevalence. Both effects can be explained by perseveration decreasing throughout learning. Perseveration 
is a fundamental aspect of human reinforcement learning23 and rodent category learning8. Our finding that 
perseveration is strongest early in category learning and decreases throughout training matches previous work 
with rodents8. Due to the inclusion of correction trials in our task design, the emergence of lose-switch behavior 
throughout learning likely arises in part from a decrease in perseveration (as indicated by the decrease in win-
stay behavior) and in part from the mice learning the task structure. Future work may consider a training regime 
without correction trials to allow for a detailed analysis of these contributions to lose-switch behavior.

Whereas the general decrease in win-stay behavior throughout learning is consistent with previous results8, 
our finding that most of the mice exhibited consistent win-switch behavior late during learning was unexpected. 
It was unexpected because win-switch is not a heuristic traditionally associated with sequential learning, unlike 
win-stay and lose-switch24. It is possible that this switching behavior was a consequence of the high uncertainty 
during early learning, which encouraged switching because of the high probability of incorrect choices. A 
bias toward switching following a correct choice would also be consistent with a tendency to explore multiple 
options. Future experiments could test explicitly whether mice can learn to favor exploration over consolidation 
of learned responses by varying reward contingencies across different stages of the task.

The wheel-based 2AFC task we implemented is a relatively difficult task for mice to learn, resulting in 
high inter-subject variability in the time taken to complete training (ranging from 4000 - 15000 trials). The 
computational methods in this study are invariant to the actual number of trials taken for each mouse to learn 
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the task. Although the wheel-based 2AFC task offers several advantages over other 2AFC tasks, such as the 
separation of choice action (turning the wheel) from reward gathering action (licking at the lick port) and the 
continuous readout from the wheel12, other 2AFC tasks, such as dual-lick port setups, offer shorter and more 
consistent learning times25. Future work may consider the effect of task difficulty on inter-subject variability 
during learning dynamics.

Our task paradigm and modeling approach allowed us to identify patterns in category preferences as they 
evolved throughout the learning process. These patterns primarily differed based on whether the direction of 
the choice bias was consistent or switched throughout training. Our finding that auditory cortex inactivation 
impaired categorization behavior raises the question of whether the auditory cortex maintains a representation 
of the category boundary throughout category learning. Future work might use our methodology combined 
with long-term electrophysiological recordings to determine how category encoding in the sensory cortex 
develops over learning.

Methods
Animals
Experiments were performed in adult male (n = 8) and female (n = 11) mice. Most of the mice (n = 17) were 
B6.CAST-Cdh23Ahl+ (Stock No. 002756) mice (The Jackson Laboratory; age 12–15 weeks; weight 20–30 g). 
Two non-Cdh23 mice were included (1 male, 1 female), their removal does not change the results. Some of the 
mice were crossed with other cell-type specific cre lines, as detailed in Table 2. All mice were housed with 2–5 
mice per cage, at 28 ◦C on a 12-h light-dark cycle with food and water provided ad-libitum pre-surgery, and 
water restricted post-surgery as described below. All experiments were performed during the animals’ dark 
cycle. All experimental procedures followed NIH guidelines and were approved by the Institutional Animal Care 
and Use Committee at the University of Pennsylvania.

Surgery
Mice were anesthetized using 1–3% isoflurane. All mice were administered subcutaneous doses of buprenorphine 
(Buprenex, 0.05–0.1 mg/kg) as analgesia, dexamethasone (0.2 mg/kg) to reduce brain swelling, and bupivacaine 
(2 mg/kg) as local anesthesia. Mice were implanted with 1–2 skull screws in the cerebellum, and a headplate 
was mounted on the skull as previously described26. An antibiotic (Baytril, 5 mg/kg) and analgesic (Meloxicam, 
5 mg/kg) were administered daily (for 3 days) during recovery. For mice undergoing muscimol injections, 
infusion cannulas (26 GA, PlasticsOne, C315GMN-SPC mini) were implanted bilaterally over the auditory 
cortices at a location of −2.6 mm posterior to Bregma/4.3 mm lateral and a depth of 500 microns. Dummy 
cannulas (PlasticsOne, C315DCMN-SPC mini with 0.5 mm projection depth) were partially screwed into the 
guide cannulas to minimize cannula blockage in the time between surgery and the injection sessions.

Auditory cortex inactivation
Prior to injection sessions, two Hamilton syringes (10uL Gaslight #1701) and tubing (C313CT 023x050 PE50) 
were backfilled with mineral oil. We attached a sterilized infusion cannula to the end of each tube and drew up 
either 500 nL of either muscimol (diluted with 1× PBS to 1.5 mg/mL, which was used on inactivation sessions) 
or 1× PBS (used on control sessions)27. We headfixed the mouse, removed the dummy cannulas, and then 
inserted the loaded infusion cannulas into the guide cannulas. We infused 450 nL of the solution bilaterally at a 
rate of 250 nL/minute. We then removed the infusion cannulas and re-inserted the sterile dummy cannulas. The 
mice then rested in their home cage for 45 min before their behavioral session. Control sessions were followed by 
injection sessions, with data collected from 20 session pairs across 6 mice. The number of mice was determined 
using a power analysis in MATLAB.

Water restriction
To establish a baseline weight, each mouse was monitored for 3 days post-operation. Once the mice regained 
weight, water deprivation began with a daily ration of 120µL/g, which gradually decreased to 40–50 µL/g. 
During the task, if mice did not receive their full ration, the remainder of their ration was provided in their home 
cage. Mouse weight, relative to baseline, was monitored throughout water restriction. A health score was also 
calculated every day, and mice were assigned a treatment plan if this score dropped or if the mouse lost more 
than 20% of their baseline weight25.

Behavioral apparatus
During the 2AFC task, the mouse was head-fixed in a custom-built, acoustically isolated chamber. A wheel 
(12-mm Hub Wheels, GDOOL) attached to a rotary encoder (COM-10932 ROHS, Sparkfun) monitored wheel 

Strain N (female) N (male)

Cdh23 8 6

Cdh23 x CAMKII-cre 1 1

Cdh23 x VGAT 1 0

Rosa x VGAT 1 1

Total 11 8

Table 2.  Mouse strains and sex.
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activity, whereas a capacitive touch sensor (AT42QT1010, SparkFun) soldered to a lick spout monitored lick 
activity. Water rewards were dispensed from a gravity-fed reservoir calibrated to deliver approximately 4–5 µL 
of water per reward. An Arduino Uno microprocessor was used for monitoring of the rotary encoder, reward 
delivery, and task logic. Custom MATLAB software communicating with the Arduino controlled the sampling 
of categories and tone burst frequencies, stimulus generation, and online data collection and analysis. For the 
stimulus generation, a sound card (Lynx E44, Lynx Studio Technology, Inc.) or a National Instruments card (NI 
PCIe-6353) was used to convert the MATLAB-generated acoustic waveforms into analog signals. An ultrasonic 
transducer (MCPCT-G5100-4139, Multicomp) delivered the analog signals. A 1/4-inch condenser microphone 
(Brüel & Kjær), positioned at the estimated location of the mouse’s ear, was used to calibrate the transducer to 
have a flat frequency response between 3 kHz and 80 kHz28,29.

All stimuli were sampled at 192 kHz or 200 kHz and 32-bit resolution. A set of tone-burst stimuli was 
generated at different frequencies. In some experiments (n = 87 training sessions), 60 frequencies were sampled, 
logarithmically spaced from 8 to 32 kHz. For these experiments, “low-frequency stimuli” were defined as 
frequencies between 8 and 10.8 kHz, “probe stimuli” were defined as frequencies between 10.8 and 23 kHz, and 
“high-frequency stimuli” were defined as frequencies between 23 and 32 kHz. In the remaining experiments 
(n = 354 training sessions), 30 frequencies were sampled, logarithmically spaced from 6 to 28 kHz. For these 
experiments, “low-frequency stimuli” were defined as frequencies between 6 and 10 kHz, “probe stimuli” 
were defined as frequencies between 10 and 17 kHz, and “high-frequency stimuli” were defined as frequencies 
between 17 and 28 kHz. Effects were not dependent on the stimulus set.

Behavioral training
Each mouse underwent three stages of behavioral training: (1) water restriction and habituation, (2) 2AFC 
training, and (3) psychometric testing. During water restriction, mice were habituated to head-fixation in the 
behavioral chambers and received water through the lick spout, getting a drop of water for licks separated by 
more than 2 s. During this stage, the wheel was taped in place. After the mouse began to receive its entire ration 
of 1–2 mL of water through the task rewards, a second habituation stage was initiated (typically after 2–3 days). 
In this second habituation stage, we trained mice to turn the wheel 30◦ in alternating directions and to hold the 
wheel still for 500 ms between turns. The mouse was rewarded with a drop of water for each turn. Moving the 
wheel during the holding period restarted the hold time. When the mouse began to receive its entire ration of 
1–2 mL of water through the task rewards, the 2AFC training stage was initiated (this stage typically took 5–8 
days). In this training stage, mice were instructed to turn the wheel in response to a 500 ms tone burst. The 
mice were equally likely to be assigned to associate clockwise turns with low-frequency (6–10 kHz) or high-
frequency (17–28 kHz) stimuli. Mice had 3 s from stimulus onset to register a wheel turn. An incorrect turn 
resulted in a noise burst and a 6-s time-out period, whereas a “no response” trial resulted in the previous trial 
being repeated. Mice were instructed to hold the wheel still for a period randomly drawn between 1 and 2 s in 
order for the next trial to commence. The mice were made aware of the next trial beginning upon hearing the 
auditory stimulus. A single session consisted of repeated trials until the mouse either began to stop responding 
or received its full water ration (200–300 trials). We monitored behavioral performance during training, and 
considered mice as trained after they completed two consecutive sessions with >75% accuracy for each category. 
For analysis purposes, only the first of these two sessions was included in the learning trajectories. After the mice 
completed two sessions with accuracies to each category above-threshold, they were moved to the psychometric 
testing stage. In this testing stage, we introduced novel tone burst stimuli with center frequencies in between the 
two frequency ranges used for the training stage (10–17 kHz) to study how the mice draw category boundaries 
between the two categories. These novel stimuli were presented on 20% of trials.

Data analysis
Extracting stimulus-independent dynamics
For all training trials, the stimuli were separated based on their category. Tone bursts from the high-frequency 
category were transformed into “evidence towards high” through normalization based on all tone bursts 
experienced by the mouse during that session. For example, the tone burst with the highest frequency would 
have an “evidence towards high” of 1, while the lowest tone burst drawn from the high distribution might have 
an “evidence towards high” of 0.66. The same was done for trials with tone bursts drawn from the low-frequency 
category. These values were then transformed using a tau distribution with τ = 2 to reflect the fact that mice 
generally show stability within the trained stimulus region. PsyTrack, a method for computing the trajectories 
of model parameters, was used to fit a generalized linear model to this behavioral data using three dynamic 
variables- two category weights and a dynamic choice bias8.

	 p(Yt = H|Xt, W t) = ϕ(XtQt)� (1)

The weights W  evolve gradually over time, with each weight wi having an individually fit rate of change.

	 W t+1 = W t + ηt(k), where ηt(i) ∼ N(0, σ2
i )� (2)

Quantifying categorization behavior
To quantify the categorization behavior of the mice, we fit the testing data with a 4-parameter psychometric 
function. Each decision is modeled as either being the result of a decision function characterized by the 
parameters µ (threshold) and σ (slope) (with probability 1 − γ) or, with probability γ, the result of lapse 
behavior, where the decision is “High” with probability λ and “Low” with probability 1 − λ.
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P (Ĉ = "High"|f) = (1 − λ) ∗ Φ

(
f − µ

σ

)
+ λ ∗ γ� (3)

We used the PyBADS toolbox to fit this model to behavioral data from individual testing sessions for each 
mouse30. To determine whether the dynamic bias informed categorization under uncertainty, we calculated the 
variability of the GLM choice bias over the final day of training for each mouse and determined the strength and 
direction of the relationship between this value and the variability of the category threshold over the first 5 testing 
sessions using the Spearman correlation. These analyses were performed using the SciKit-Learn package31.

Generating learning trajectories
We generated category-conditioned accuracy traces by first separating out mouse responses to high-frequency 
and low-frequency trials. These traces consisted of responses for sessions where the mice were exposed to 
the training stimuli, up to and including the first day that the accuracy for each category passed 75%. These 
category-conditioned traces were smoothed by taking a rolling average and then subsampled every 50 trials. We 
then calculated the most chosen category for each mouse over their first session and defined that as the mouse’s 
“preferred category”.

Clustering
We first calculated the probability that a mouse correctly responded to low-category stimuli P(H|L) and high-
category stimuli P(H|L). We applied a smoothing algorithm over 50 trials to generate estimated category-
conditioned accuracy traces. To generate the trace estimating the probability of the mouse responding “High”, 
we averaged the two category-conditioned accuracy traces.

	
P (Ĉ ="High") =

∑
C

P (y = "High"|C)P (C) � (4)

	
P (Ĉ ="High") = 1

2P (y = "High"|C = "High") + 1
2P (y = "High"|C = "Low") � (5)

To remove clusters that differed based on their direction of stimulus-independent dynamics, we assigned a 
direction to the vectors such that the positive direction was towards their initial bias over their first training 
session. The resulting vectors, P (Ĉ  = “Preferred Category”), were clustered using Dynamic Time Warping 
(DTW) classification. It is preferable to Principle Component Analysis in situations in which the data being 
clustered is smoothed over time32. We utilized the Python package Tslearn for the DTW clustering33. We 
clustered the vectors 100 times and calculated the proportion of the runs that each pair of mice were clustered 
together. We used 70% co-clustering as the threshold for a pair being consistently clustered together and found 
that 17/19 mice were consistently clustered into the same groups, while 2 mice co-clustered with each other but 
not with any other mice. These 2 mice were not considered in analyses based on clustering.

Learning model
We constructed a simple reinforcement learning model to capture the learning dynamics of the mice. For this 
model, stimuli were binarized as “low” or “high” based on their category membership. Stimulus evidence on 
trial t was encoded as Xt = [xL, xH ], where xL is the evidence towards low in a given trial, and xH  is the 
evidence towards high. Low-frequency stimuli were encoded as Xt = [−1, 0], whereas high-frequency stimuli 
were encoded as Xt = [0, 1]. To simulate the subject’s choice, the stimulus evidence towards the high category 
Et was multiplied by the subject’s stimulus-action associations Qt = [qL, qH ], and shifted by a constant bias 
term b. To reflect that the bias is not necessarily static, we allowed for an initial stimulus action-association bias, 
Qinit, that varied across subjects.

	 Et = XtQt + b� (6)

The probability that the agent chooses the high category based on the stimulus evidence P H
t  was calculated by 

transforming the stimulus evidence into a probability space using the logistic transformation.

	
P H

t = ϕ(Et), where ϕ(x) = 1
1 − e−x

� (7)

We fit this model by calculating the log-likelihood LL for each trial. LL was calculated by comparing the simulated 
agent’s decision probability P H

t  with the actual decision of the mouse on the given trial. The reward state for the 
trial, rt, was determined by the true decision of the mouse, not the simulated decision probability. This reward 
state was used to update the stimulus-action association qCt

t  using a delta-rule. Ct encodes the stimulus category 
presented on trial t, and α represents the learning rate.

	 ∆ =α(rt − xCt
t qCt

t ) � (8)
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	 qCt
t+1 =qCt

t + ∆ � (9)

We used this simple model as a baseline for model comparison. In this model, the three free parameters are the 
overall preference b, the initial bias Qinit, and the learning rate α. We chose these three parameters because 
they control the shape of the learning trajectory. To capture the stimulus-independent dynamics during early 
learning, we modified this simple model by adding a choice-history coefficient, β. This parameter controlled the 
extent to which the updating associated with the reward state caused the agent to change their overall valuation 
of the previous action, independent of the presented stimulus category. This additional parameter allows for 
more complex stimulus-independent trajectories during early learning.

	 q
C′

t
t+1 = q

C′
t

t − e−β∆� (10)

Here, qC′
t

t  is the stimulus-action association of the non-presented category. The negative updating results in a 
shift towards the same turn direction as the stimulus-action association of the presented category. For large e−β  
terms, qCt

t+1 and qC′
t

t+1 are both shifted towards the same turn direction with similar magnitudes, meaning little 
category learning has occurred.

Choice-history effects
For each mouse, across the training regime, we calculated the probability of turning in the previous trial’s “correct” 
direction (win-stay following a reward or lose-switch following an error trial). We additionally calculated the 
probability of the mouse exhibiting win-stay and lose-switch behavior, separately. We determined the strength 
and direction of the correlation between these probabilities and the β term using the Spearman coefficient. We 
calculated the individual win-stay and lose-switch probabilities for each mouse for each session and compared 
the first 3 and final 3 training sessions for each mouse using a Wilcoxon Sign-Rank test. These analyses were 
performed using the SciKit-Learn package31. For calculating the main effects of session number on win-stay 
and lose-switch probabilities, we used an Ordinary Least Squares (OLS) model with different intercepts for each 
mouse. There was a high level of variability in the initial level of win-stay and lose-switch probabilities across 
mice, and this model allowed us to determine whether there was an overall effect of session number while 
acknowledging this variability. We used the p-values associated with whether the slope was different from zero to 
quantify whether there was a main effect for each analysis. These analyses were performed using the statsmodels 
package34.

Data availability
The data and code associated with this paper are publicly available. The code can be accessed at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​
o​m​​/​g​e​f​f​​e​n​l​a​b​/​C​a​t​e​g​o​r​i​z​a​t​i​o​n​S​t​r​a​t​e​g​i​e​s​​​​​, while the data has been made available on Dryad at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​
0​6​1​/​d​r​y​a​d​.​7​3​n​5​t​b​3​5​9​​​​​.​​
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