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Dynamics of cortical contrast adaptation
predict perception of signals in noise

Christopher F. Angeloni1,2, Wiktor Młynarski3,4, Eugenio Piasini 5,
Aaron M. Williams2,6, Katherine C. Wood2, Linda Garami2,
Ann M. Hermundstad 7 & Maria N. Geffen 2,6,8

Neurons throughout the sensory pathway adapt their responses depending on
the statistical structure of the sensory environment. Contrast gain control is a
form of adaptation in the auditory cortex, but it is unclear whether the
dynamics of gain control reflect efficient adaptation, and whether they shape
behavioral perception. Here, we trained mice to detect a target presented in
background noise shortly after a change in the contrast of the background.
The observed changes in cortical gain and behavioral detection followed the
dynamics of a normative model of efficient contrast gain control; specifically,
target detection and sensitivity improved slowly in low contrast, but degraded
rapidly in high contrast. Auditory cortexwas required for this task, and cortical
responseswere not only similarly affected by contrast but predicted variability
in behavioral performance. Combined, our results demonstrate that dynamic
gain adaptation supports efficient coding in auditory cortex and predicts the
perception of sounds in noise.

As we navigate the world around us, the statistics of the environment
can change dramatically. In order to maintain stable percepts, the
nervous system adapts to persistent statistical properties of sensory
inputs. The efficient coding hypothesis postulates that the nervous
system accomplishes this by matching the limited dynamic range of
individual neurons to the statistics of incoming sensory signals1,
thereby efficiently encoding information within many types of
environments2–4. Indeed, adaptation to environmental statistics has
been found in many sensory modalities and species5–13. In the auditory
system, neurons exhibit contrast gain control, adapting the gain of
their response function to match the variability in level (contrast) of
the incoming sounds14–19. Yet, it is unknown whether and how the
dynamics of contrast gain control in the auditory system inform per-
ception, as the dynamics of neuronal adaptation have not previously
been measured simultaneously with behavior. The goal of our study
was to test if the dynamics of contrast gain control in auditory cortex
predict changes in the perception of targets embedded in noise.

Contrast gain control has been proposed as a mechanism for
creating sensory representations of sounds that are invariant to
background noise20. In the ferret auditory pathway, representations of
sounds become more noise-tolerant in higher auditory areas, and the
amount of noise-tolerance correlates with the strength of adaptation
to the stimulus statistics, suggesting that level adaptation and gain
control enhance the encoding of stimuli embedded in stationary
noise16. Additionally, recent psychophysical studies found that per-
ception in noise is altered by efficient adaptation to stimulus statistics.
In humans, target level discriminability is greater in low contrast than
in high contrast, an effect consistent with gain control observed in
primary auditory cortex19. Similar relationships between gain control
and behavioral percepts of sound location have also been found in
ferrets10 and guinea pigs21. However, in these previous studies, the
measurement of psychophysical performance and neuronal gain
control were performed separately in human and animal subjects,
respectively, so it remains unclear how variability in adaptation over
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sessions or subjects relates to behavioral performance. Additionally,
these previous studies focused primarily on behavioral performance
after complete adaptation to stimulus contrast, whereas recent work
has highlighted the dynamical nature of efficient adaptation22,23. In the
current study, we aimed to assess whether and how the dynamics of
contrast gain control reflected efficient adaptation and predicted
behavioral performance across subjects.

First, we established a normative framework to model the neu-
ronal dynamics of gain control and predict how efficient contrast
adaptation should affect the detection of signals in noise. We then
derived a procedure for estimating moment-to-moment changes in
neuronal gain based on a generalized linear model (GLM) and found
that the dynamics of gain control in auditory cortex were asymmetric,
as observed in the normative model. Next, to test the role of contrast
gain control in auditory behavior, we trained mice to detect targets
after a change in background contrast. We found that contrast-
induced changes in behavioral target detection threshold, sensitivity,
and behavioral adaptation dynamics followed the normative model
predictions. Furthermore, we found that auditory cortex was neces-
sary for detection in the presence of a background, but not for
detection in silence, suggesting a distinct role of auditory cortex in
separating targets from the background. Building on this finding, we
found that the dynamics of cortical encoding of targets resembled the
normativemodel predictions andobservedbehavioral adaptation, and
that population activity in the auditory cortex predicted individual
variability in behavioral performance. Finally, we estimated cortical
gain during the task, finding that variability in neuronal gain predicted

variability in task performance. Combined, our results identify a pre-
dictive relationship between efficient adaptation via gain control and
detection of signals in noise, and provide a normative framework to
predict the dynamics of behavioral performance in changing sensory
environments.

Results
Target-in-background detection task and normative model for
task predictions
To assess how behavioral performance is impacted by adaptation to
stimulus contrast, we first devised a GO/NO-GO task in which mice
were trained to detect targets embedded in switching low and high
contrast backgrounds. During each trial, the mouse was presented
with dynamic random chords (DRCs) of one contrast, which switched
after 3 s to the other contrast. At variable delays after the contrast
switch, broad-band target chords were superimposed on the back-
ground chords, and mice were trained to lick for a water reward upon
hearing the target (henceforth, we refer to high-to-low contrast trials
as “low contrast” and low-to-high contrast trials as “high contrast”,
referring to the contrast where mice detected targets). Target trials
were interleaved with background-only trials, in which the mouse was
trained to withhold licking, but would receive a 7 s timeout for licking
after the contrast switch (Fig. 1a, b). To assess behavioral sensitivity to
targets, we parametrically varied target level in each contrast, and to
assess behavioral adaptation, we parametrically varied target timing
(Fig. 1c). This stimulus design allowed us to quantitatively test how the
dynamics of adaptation to background contrast affect perception.
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Fig. 1 | Target in background detection task and normativemodel predictions.
a Experimental setup. Tetrode drive images are adapted from ref. 85. bGO/NO-GO
task design. Spectrograms are plotted for example NO-GO and GO trials with
transitions from low to high contrast (top row) and high to low contrast (bottom
row), with waveforms plotted below each spectrogram (color bar indicates the
sound level). Below the example trials, the timing of the response window, sche-
matic licks, and responses to licks are plotted. For NO-GO trials, licks in the
response window received a timeout. For GO trials, licks in the response window
were rewarded with 5 µL of water. c Example target parameters. Top: varied target
levels, with level in dB SNR indicated by the color bar. Bottom: varied target times,
where each arrow indicates a potential target delay. dNormativemodel of efficient
gain control. Target andbackgrounddistributions for each contrast are indicated in
the left panel. (1) Target stimuli are indicated with circles, while the background

stimulus is indicated by a line. The stimulus response in a given time window is
transformed by an adapting nonlinearity to generate spikes. (2) The spiking
responses are decoded to update an estimate of the stimulus variance. (3) The gain
of the nonlinearity is adjusted to optimally predict the variance of the next time-
step. Inset: Example spike distributions of the model neuron in low and high con-
trast for targets (dark histograms), and background (light histograms). e Model
target-from-background discriminability as a function of contrast and target level.
Circles indicate model performance overlaid with logistic function fits (solid lines)
and thresholds (dashed lines). f Model discriminability over time in low and high
contrast. Circles indicate model performance overlaid with exponential function
fits. g Model gain dynamics over time in each contrast. h From top to bottom:
model predictions for target detection thresholds, slopes, and adaptation time
constants in each contrast. Source data are provided as a Source Data file.
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To estimate the optimal time course of contrast gain control
and predict its impact on target detection, we developed a norma-
tive model of behavioral performance constrained by efficient
neuronal coding. In this model, we simulated a neuron designed to
encode stimuli with minimal error. To efficiently exploit its finite
dynamic range, the model neuron estimated the contrast of the
recent stimuli, and adjusted the gain of its nonlinearity to minimize
the error in estimated contrast (Fig. 1d, panels 1–3; Methods)22, 23.
Adding targets at different levels and times relative to contrast
transitions allowed us to probe the sensitivity of the model neuron
to targets of varying strength over the time course of adaptation
(Supplementary Fig. 1c, d). When varying target strength and mea-
suring the”psychometric” performance of the model (Eq. (1), Meth-
ods), we found decreased detection thresholds and steeper slopes in
low contrast relative to high contrast (Fig. 1e). When varying target
timing, two factors affected target discriminability: 1) The change in
the stimulus distribution after the contrast switch; 2) The effect of
gain adaptation on responses to the background (Fig. 1f, g; Sup-
plementary Fig. 1c, d). Recapitulating previous results14, the
dynamics of themodel responses to targets were asymmetric across
each contrast (Fig. 1f). These dynamics were well characterized by a
single effective timescale, which we quantified by fitting an expo-
nential (Eq. (2)) to each transition. The normative model presented
three primary predictions for target detection behavior: When
adapted to low contrast, 1) target detection thresholds will be lower
and 2) model psychometric functions will have steeper slopes, and,
3) target detectability during the adaptation period will be

asymmetric: rapidly decreasing after a switch to high contrast, and
slowly increasing after a switch to low contrast (Fig. 1h).

Estimated cortical gain dynamics follow a normative model of
gain control
Previous work on contrast gain control used static models, measuring
steady-state gain after the neuron fully adapted to the new
stimulus14,16,17,19, but see refs. 15,24. We developed a model to estimate
the gain of neurons in auditory cortex over time following a contrast
transition. This generalized linear model (GLM) was fit to data recor-
ded from the auditory cortex of a naive mouse (n = 97 neurons) pre-
sented with 3 s alternations of low and high contrast DRCs, and
compared with traditionally used modelling frameworks (Fig. 2a-c).

The inference model is a GLM with dynamic gain control (GC-
GLM) that decomposes the relationship between spiking activity (yt)
and the presented sounds into a stimulus component (xt), contrast
component (�σ=σt), and an interaction between the stimulus and the
contrast (xt*�σ=σt , where �σ is an arbitrary constant, defined as the
contrast at which the gain is 1; Methods). We calculated a gain index
(wt) from the fitted model parameters (Fig. 2c), which quantified
whether gain control estimated by the model was optimal given the
background contrast levels. For the contrast levels used in this study,
wt = 1.5 indicates an optimal increase in gain during low contrast,
wt = 0.5 indicates an optimaldecrease in gainduringhigh contrast, and
wt = 1.0 indicates no gain control (Methods). To validate themodel and
gain index we simulated neurons with defined temporal trajectories of
gain control and found that the model accurately recovered the
ground-truth simulated gain dynamics (Supplementary Fig. 2;
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Fig. 2 | Cortical adaptation to sound contrast is asymmetric. a Schematic of
acute recordings from auditory cortex. Atlas slices were used with permission from
figures published in The Mouse Brain in Stereotaxic Coordinates, Third Edition, by
Keith Franklin and George Paxinos, pages 49-62, Copyright Elsevier (2007).
b Schematic of the linear-nonlinear (LN) model, with a static (gray) or gain-
controlled (blue, red) nonlinearity. c A Poisson GLM for estimating gain dynamics.
Note that the model estimates gain as the interaction between the stimulus and
contrast. Dice graphics weremodified by the authors under the Free License based
on images from www.vecteezy.com/vector-art/15740075-dice-icon-vector-design-
templates.dTop: Spike raster for a representative unit. Blue and red horizontal bars
indicate low and high contrast periods of the trial, respectively. Middle: the spike
rate of the neuron is overlaidwith the predictions froma static LNmodel, LNmodel
with gain control, or GLMwith gain control. Bottom: gain index,wt , estimated from
the GLM parameters (Methods). Dashed lines indicate optimal and no gain control
(Methods). Orange trace indicates the gain dynamics of the neuron. e Spectro-
temporal receptive field (STRF) fit to this neuron. Color bar indicates the strength
of the filter response. f Nonlinearities fit to the STRF prediction in low and high

contrast. g Dashed blue and red lines indicate the gain index of the example cell in
low and high contrast. The overlaid solid lines are exponential fits to the data.
h Cross-validated Pearson correlation coefficients between the trial averaged
model predictions and spike rates for each model (n = 97 neurons; colors as in d.
Error bars indicate 95th percentiles around the median. Asterisks indicate the
results of two-way sign-rank tests. i Distribution of gain control estimated by the
GLM. Orange line indicates the median. Asterisks indicate the results of a two-way
sign-rank test (p =0.004). j Gain control estimates for each neuron from the GC-
GLM and the GC-LNmodel (black dots) overlaid with the best linear fit (black line)
and 95% confidence interval of the fit (gray area). Asterisks indicate whether the
linearmodel was significantly different from a constantmodel (p = 7.33e−4). kGain
index for all of the neurons with gain control (n = 45). Light lines are the average
±SEM, while the dark lines are exponential fits to the average. l Adaptation time
constants from gain-controlled neurons after a switch to low (blue dots) and high
contrast (red dots). Asterisks indicate the results of a two-way sign-rank test
(p = 6.16e−6). Source data are provided as a Source Data file.
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Supplementary Information). For comparison, we also fit previously
described linear-nonlinear (LN) models to each neuron14, 16,17,19, one
with a static output nonlinearity (static-LN), and one with a contrast-
dependent, or gain-controlled output nonlinearity (GC-LN, Fig. 2b;
representative neuron: Fig. 2d–g). In this neuron, the fits of both the
GC-LN model and GC-GLM exhibited contrast gain control, as char-
acterized by high gain in low contrast and low gain in high contrast
(Fig. 2f and g, respectively), suggesting that both models capture
similar contrast-driven changes in cortical gain.

Qualitatively, GC-GLM outperformed standard LN models, pri-
marily by capturing the adaptation dynamics after the transition
(Fig. 2d, middle panel), allowing us to analyze the gain control index
(wt) as a function of time (Fig. 2d, bottom panel; Fig. 2g). To test
whether the GC-GLM could better account for the data than standard
models, we compared cross-validated correlations of the model pre-
dictions with the trial-averaged PSTH for each neuron, finding a sig-
nificant effect of model type on the correlations (Kruskal–Wallis test:
H(2) = 93.61, p = 6.70e−21). GC-GLM correlation was significantly
higher (Median (Mdn) = 0.75, Inter-Quartile Range (IQR) = 0.24) than
the GC-LN model (Mdn = 0.54, IQR =0.49, p = 4.41e−6, post-hoc sign-
rank test) and the static-LN model (Mdn = 0.25, IQR =0.73, p = 9.56e
−10, post-hoc sign-rank test). Consistent with previous studies14,15, we
also found that the GC-LN model outperformed the static-LN model
(p = 3.50e−6, Fig. 2h). To compare the GC-GLM to an existing dyna-
mical model of contrast gain control, we also fit a recent model of
dynamic contrast adaptation19 to our data (Supplementary Fig. 3a).
Across the neurons in this dataset, we found that the GC-GLM was a
better predictor of neuronal activity than the existing model (Sup-
plementary Fig. 3b).

We then quantified whether the GC-GLM reliably detected gain
control in the neuronal population. Here, we defined steady-state gain
control by calculating the change inwt betweenhigh (wH) and low (wL)
contrast after the gain has stabilized (1 s after the contrast switch).

Based on our definition of wt , wH �wL = � 1 if gain control is optimal
(Methods). Across all neurons, we found significant gain control (Mdn:
−0.10, IQR: 0.35, sign-rank test: Z = −2.90, p = 0.004; Fig. 2i). To further
validate the GLM estimates of gain, we compared the GC-GLM gain
control indices at steady-state to those of the GC-LNmodel and found
a significant relationship (linear regression: F(1,95) = 12.20, p = 7.33e−4,
R2 = 0.11; Fig. 2j). Together, these results demonstrate that the GC-GLM
model better accounts for the neuronal data by incorporating the
dynamics of gain control and conclude that this method captures a
similar estimate of steady-state gain control when compared to stan-
dard models.

Finally, we analyzed the dynamics of gain control by fitting wt

after each contrast switch with an exponential function (Fig. 2g). In
neurons with gain control (wt<0 at steady state), the average time
course of wt was asymmetric across contrast transition types, rapidly
decreasing after a switch to high contrast, and slowly increasing after a
switch to low contrast (n = 45 neurons; Fig. 2k). Within this same
population, we quantified the timescale of adaptation to each contrast
using the time constant (τ) of each exponential fit, finding significantly
longer timeconstants in low contrast (Mdn =0.29, IQR = .39) relative to
high contrast (Mdn =0.048, IQR =0.094; sign-rank test: Z = 4.52,
p = 6.16e−6; Fig. 2l). This asymmetry in gain adaptation reflected the
dynamics of the normative model (Fig. 1g), prior electrophysiological
studies14, and the behavior of previously described optimal variance
estimators25.

Mouse behavioral detection is modulated by background
contrast
We next tested whether the asymmetry in gain control in cortex was
reflected in behavioral sensitivity to targets in background noise. Mice
were initially trained in a simple version of the GO/NO-GO task where
they were required to lick in response to a target and withhold licks on
trials without a target (Fig. 1b and 3a). Out of the 25 mice trained, 24
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mice learned this task reliably, typically reaching criterion perfor-
manceof 80%correctwithin 2-3weeks in either contrast (Fig. 3b). False
alarm rates were significantly higher in high contrast than in low
contrast (Supplementary Fig. 4a), suggesting that detection is more
difficult in high contrast, which we discuss next.

By varying the level of presented targets, we collected psycho-
metric curves for eachmouse in each contrast. To isolate the effect of
stimulus contrast on behavioral performance, we included sessions
from mice that were exposed to similar target levels in low and high
contrast (Fig. 3c; see Supplementary Fig. 4 and Supplementary Results
for results using different target ranges). In this cohort, targets were
easier to detect in low contrast: we observed significantly lower
detection thresholds in low contrast (Mean (M) = 8.79, standard
deviation (std) = 3.13) as compared to high contrast (M = 15.39, std =
3.27; paired t-test: t(10) = −4.20, p =0.0057, Fig. 3d). Furthermore,
psychometric slopes were significantly steeper in low contrast
(M =0.040, std = 0.0048) compared to high contrast (M =0.036,
std =0.0026; paired t-test: t(10) = 3.037, p =0.023; Fig. 3e). Combined,
these results demonstrate that targets were easier to detect in low
contrast, as predicted from the normative model (Fig. 1h).

To assess behavioral adaptation to the background contrast, we
presented targets at threshold level at variable delays following the
contrast transition. We observed behavioral time courses consistent
with the normativemodel andwith gainmeasured in auditory cortex:
after a switch of the stimulus to high contrast, detection rates
decreased quickly over time, but after a switch to low contrast
detection, rates increased slowly over time (Fig. 3f). In high contrast,
the first significant drop in performance occurred between the first
two time points, while in low contrast the first significant increase in
performance occurred between the first and third time points
(Fig. 3f, Supplementary Table 1). Indeed,fitting exponential functions
to performance over time revealed that behavioral adaptation was
significantly faster in high contrast (median and interquartile
range of time constant: Mdn = 0.023, IQR = 0.082) compared to
low contrast (Mdn = 0.13, IQR = 0.13; sign-rank test: Z = 2.75,
p = 0.0060; Fig. 3g).

To directly compare the predictions of the normative model
presented in Fig. 1 to behavioral performance, we computed a contrast
modulation index to measure the percent change in behavioral and
model parameters between high and low contrast (CMI: Eq. (3),
Methods). To assess whether the model prediction was within the
range of expected behavioral values, we computed the 95% confidence
intervals of the behavioral CMI values using a bootstrapprocedure.We
found that the CMI values of the normative predictions fell within the
rangeof expectedCMIvalues forbehavioral thresholds and adaptation
times. As observed in behavior, the model predicted a decrease in
slope in high contrast, however, the magnitude of the predicted
decrease was larger than the range of observed slope CMI values
(Fig. 3h). Taken together, the behavioral results were qualitatively
consistent with all three predictions from the normative model
(Fig. 1h): 1) Detection thresholds are lower in low contrast; 2) Psycho-
metric slopes are steeper in low contrast; 3) Performance decreases
rapidly in high contrast and increases gradually in low contrast.

Auditory cortex is necessary for detection in background noise
Whereas gain control is present in many areas along the auditory
pathway, it is strongest in auditory cortex16, 19. As such, we hypothe-
sized that auditory cortex supports the detection of sounds in the
presence of background noise. To test whether auditory cortex is
required for task performance, we inactivated auditory cortex using
the GABA-A receptor agonist muscimol. We validated that muscimol
disrupts cortical coding of target sounds by applying muscimol topi-
cally to the cortical surface during passive playback of the behavioral
stimuli, finding near complete suppression of target responses (Sup-
plementary Fig. 5a–f, Supplementary Information).

To test if inactivation of auditory cortex affects behavioral
performance, we repeated the same experiments in behaving mice,
administering muscimol or saline bilaterally through chronically
implanted cannulae (4mice; Fig. 4a). We found a profound decrease
in the response rates to targets and background in both contrasts
(Fig. 4b). We quantified these effects on the psychometric curve
using a three-way ANOVA with cortical intervention (muscimol or
saline), contrast, and target level as factors. We found significant
main effects of cortical intervention (F(1,307) = 278.63, p = 3.83e
−44), contrast (F(1,307) = 4.39, p = 0.037) and level
(F(6,307) = 40.90, p = 7.54e−36). Post-hoc tests showed that mus-
cimol application significantly decreased hit rates in both contrasts
by 31.45% (95% CI: [27.76, 35.14], p = 1.060e−10), whereas an
increase in background contrast significantly decreased hit rates in
both intervention conditions by 3.95% (95% CI: [2.57, 7.64],
p = 0.036). Furthermore, we observed significant interactions
between target level and cortical intervention (F(6307) = 14.11,
p = 4.47e−14), and between target level and contrast (F(6307) = 2.97,
p = 7.87e-3), but we did not observe a significant interaction
between contrast and cortical intervention, suggesting that musci-
mol has the same effect in low and high contrast. To quantify the
effects of muscimol on behavioral performance, we extracted
response rates to the maximum target level, false alarm rates,
thresholds, and slopes of psychometric functions fit to each ses-
sion, and found that muscimol significantly reduced every measure
of behavioral performance, with the exception of behavioral
threshold (Fig. 4c, Supplementary Table 1). From these results, we
can conclude that auditory cortex is necessary for detecting targets
in background, regardless of background contrast.

A potential alternative effect of muscimol is a general loss of
function that is not specific to hearing target sounds. To control for
this, we devised an alternative to the detection in background task
wheremice detected targets in silence (Fig. 4d). To ensure equivalency
between the two tasks, we took the highest-level target trials in the
target-in-background task (25 dB SNR in high contrast) and removed
the background noise during the target detection period (Fig. 4e,
bottom). In this new task, mice heard the exact same targets as in the
target-in-background task except that the background noise pre- and
post-target presentation was removed. This allowed us to test whether
auditory cortex is specifically required for target detection in the
presence of a background (Methods).

To assess behavioral performance in this new task, we modu-
lated detection difficulty by attenuating the level of each target. As
observed previously, inactivation of auditory cortex impaired
detection in high contrast (Fig. 4e, top). However, cortical inacti-
vation had little effect on behavioral performance in silence (Fig. 4e,
bottom). We quantified these effects on behavior using a three-way
ANOVA with cortical intervention (muscimol or saline), task
(detection in background or silence), and target level as factors
(n = 26 sessions from 2 mice). We found significant main effects of
intervention (F(1,181) = 62.83, p = 3.62e−13), task (F(1,181) = 6.82,
p = 9.86e−3), and level (F(6,181) = 46.16, p = 1.69e−32). Muscimol
significantly reduced hit rates by 20.2% (95% CI: [15.19, 25.17],
p = 1.060e−10, post-hoc). Hit rates for targets presented in silence
were significantly elevated by 6.65% relative to targets presented in
background (95% CI: [1.65, 11.64], p = 0.0090). Furthermore, we
found significant interactions between cortical intervention and
task type (F(1181) = 6.36, p = 0.013), intervention and level
(F(6,181) = 3.47, p = 2.98e−3), and level and task type (F(6,181) = 8.47,
p = 5.43e−8). As before, we parameterized behavioral performance
by fitting the performance on each session with a psychometric
curve, and we extracted the response rates to the maximum target
level, false alarm rates, response rates at threshold level, and slopes
of psychometric functions. During the target-in-background task,
we found significant effects of muscimol on the response rates at
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maximum level and threshold, a moderate effect on psychometric
slope, and no effect on false alarm rate. However, muscimol appli-
cation had no significant effect on any of these measures in the
target-in-silence task (Fig. 4f, Supplementary Table 1). Taken toge-
ther, these results show that while both cortical inactivation and the
presence or absence of background noise affected behavioral per-
formance, these effects interacted: muscimol had a larger effect on
performance when background noise was present.

Combined, our findings demonstrate that the auditory cortex is
specifically required for detection in the presence of background
noise, but not in silence. Our next goal was to test whether neuronal
activity in AC is predictive of behavioral performance.

Cortical codes predict individual behavioral performance
To better understand how representations in the auditory cortex
could give rise to behavior, we chronically recorded from popula-
tions of neurons in auditory cortex of 12 mice while they performed
the psychometric task (Fig. 5a, Supplementary Fig. 6). When using
microdrives with drivable tetrodes, we lowered the tetrodes a small
distance at the end of each session to record from new populations
of cells. In the 242 sessions analyzed, we recorded from 18 ± 15
neurons simultaneously (mean ± standard deviation), with a max-
imumof 73 andminimumof 3 neurons simultaneously recorded. For
the following analyses, we only included neurons with spike rates
greater than 1 Hz, realistic spike waveforms (Methods), and with
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significant responses to targets (AUC value significantly greater than
0.5 at two or more levels, Fig. 5b, inset; Methods). Following these
selection criteria, 12 ± 9 neurons were included in analysis for each
session.

To quantify the representations of targets and background in the
neuronal population (example responses in Fig. 5b, c), we adapted a
population vector approach26 to generate a target-from-noise dis-
criminability metric using population activity (Methods). This method
allowed us to project trial distributions in n-dimensional neuronal
space along a single dimension that separated target and background
trials (Fig. 5d, left panel). We then estimated the criterion projection
value that best predicted whether each trial contained a target or just
background27 (Fig. 5d, right).

This population decoding method allowed us to estimate neuro-
metric functions to directly compare to psychometric functions for
each mouse (Fig. 5e). On average, neurometric and psychometric
functions were qualitatively similar (Fig. 5f) and highly correlated
across sessions (Fig. 5g). To assess the relationship between neuro-
metric and behavioral performance, we first considered the potential
variables thatwere likely tomodulate behavior, namely: the level of the
presented targets, the contrast of the background, and neuronal
variability that could fluctuate from session to session. To isolate the
effects of each of these variables, we used a linear model to predict
behavioral performance on each session using target level, contrast,
and the neurometric performance as predictors (F(4,794) = 593.0,
p = 3.15e−202, R2 =0.69, Fig. 5i, top).
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As expected, we found that basic stimulus features (target level
and background contrast) were strong predictors of behavioral per-
formance, such that performance was higher for increased target
levels (b =0.14, 95% CI [0.12, 0.15], p = 4.15e−65), while performance
was lower for increased contrast (b = −0.050, 95% CI [−0.071, −0.028],
p = 5.67e−6). These results confirm our previous results on the beha-
vioral impacts of stimulus contrast (Fig. 3). Crucially, we also observed
that population activity was predictive of behavioral performance at a
session level, such that an increase in neurometric performance was
accompaniedby an increase inbehavioral performance (b =0.016, 95%
CI [0.0017, −0.031], p = 0.029). Finally, we found that the relationship
between behavioral and neuronal performance was mediated by sti-
mulus contrast (b = 0.026, 95% CI [0.0042, 0.048], p = 0.020; Fig. 5i,
bottom). Taken together, these results suggest that session-to-session
fluctuations in cortical population activity resulted in corresponding
fluctuations in behavior, and that this relationship was affected by
stimulus contrast.

To control for the effect of target level on the relationship
between behavioral and neuronal performance, we first visualized
the data by regressing out the effect of level on the model terms and
behavioral performance: this visualization demonstrates the positive
relationship between the two terms (Fig. 5g, inset), as captured by the
significant neurometric coefficient in Fig. 5i. To further control for
the effect of level, we split the data into low, medium and high target
levels (Fig. 5h). In all level-splits, the relationship between neuro-
metric and behavioral performance was significant (Supplementary
Table 1). These findings suggest that regardless of the target level,
neuronal performance predicted behavioral performance.

Next, we assessed whether neurometric performance was affec-
ted by contrast similarly to behavioral performance. To isolate the
effect of contrast on neurometric curves and best compare to psy-
chometric curves presented in Fig. 3, we selected only recording ses-
sions with matched target ranges (n = 117) and fit each neurometric
curve with a logistic function. We found that neurometric function
thresholds increased in high contrast (Mdn[IQR] of low contrast ses-
sions (n = 82): 7.19[4.83], high contrast sessions (n = 35): 13.47[8.88];
rank-sum: Z = 4.69, p = 1.34e−6, Fig. 5j), and that neurometric slopes
decreased in high contrast (low contrast: 0.036[0.014], high contrast:
0.030[0.021]; Z = 1.88, p =0.029, Fig. 5k). These findings corroborated
the observed changes in psychometric functions (Fig. 3) and the pre-
dictions of the normative model (Fig. 1).

Combined, these results demonstrate that parameters of neuro-
metric and psychometric functions are affected by contrast as pre-
dicted by a normative model of gain control. We also find that
individual variation in behavioral performance is predicted by popu-
lation activity in auditory cortex, independently of the effect of con-
trast and target level, which further supports the role of auditory
cortex in the detection of signals in noise.

Dynamics of cortical target detection during adaptation
We next measured how cortical discriminability evolved as a func-
tion of time and contrast in sessions where mice were presented
with targets at threshold level at different offsets relative to the
contrast switch. In linewith our behavioral results (Fig. 3f), we found
that in high contrast the first significant drop in cortical discrimin-
ability occurred between the first two target times, while in low
contrast the first significant drop occurred between the first and
third target times (n = 43 recording sessions; Supplementary
Table 1; Fig. 5l, left). To quantify the speed of neuronal adaptation,
we fit the average neuronal discrimination time course for each
mouse with an exponential function (n = 12 mice). Consistent with
the normative model (Fig. 1f−h), and with gain control dynamics
estimated from cortical activity (Fig. 2k, l) and behavior (Fig. 3f, g),
we found asymmetric adaptation in the neuronal responses, with
larger adaptation time constants in low contrast (Mdn = 0.14,

IQR = 0.21) relative to high contrast (Mdn = 0.033, IQR = 0.16; sign-
rank test: p = 0.016; Fig. 5l, right).

Cortical gain predicts behavioral performance
Our results so far demonstrate that population codes in auditory
cortex are not only shaped by stimulus features, but also predict
variation in behavioral performance. To assess the role of cortical
gain in behavior, we leveraged the design of the background sounds
to estimate spectrotemporal receptive fields (STRFs) and non-
linearities of neurons recorded during task performance. For each
neuron, we fit a model with a static nonlinearity (static-LN) or a
model with gain control (GC-LN; Fig. 6a–d). We then pooled the
neurons recorded across sessions including only neurons with
strong stimulus responses in both contrasts (Methods). To ensure
that observed changes in gain were not due to changes in STRF
shape during the task, we first compared STRFs estimated from
each task epoch (i.e. low and high contrast) and found that STRF
properties were stable across the trial (Supplementary Fig. 7,
Supplementary Methods).

First, we compared the cross-validated performance of the static-
LNmodel versus theGC-LNmodel.We found higher correlations using
the GC-LN model (Mdn=0.82, IQR =0.17) relative to the static-LN
model (Mdn =0.67, IQR =0.12; n = 2,792 neurons; sign-rank test:
Z = −36.74, p = 1.88e−295; Supplementary Fig. 8a). We also found sig-
nificantly higher gain in low contrast (Mdn=0.10, IQR =0.13) than in
high contrast (Mdn = 0.041, IQR = 0.023; sign-rank test: Z = 37.92,
p = 1.070e−314; Fig. 6e, inset). These results demonstrate that LN
models can more accurately predict cortical activity when incorpor-
ating contrast gain control, and confirm previous reports of robust
gain control in mouse auditory cortex17–19.

Based on our previous results, we expected that the strength of
gain control in auditory cortex would predict target detectability.
When fitting the GC-LN model, we separately estimated neuronal gain
during the adaptation period of the trial and the target period of the
trial (defined as the time periods before and after the contrast switch,
respectively; Fig. 6b). To quantify the effects of contrast and trial
period on gain, we performed a two-way ANOVA, with gain as the
dependent variable, and contrast, trial period, and their interaction as
factors (n = 2262 neurons, after excluding outliers, see Methods). As
expected, we found a significant main effect of contrast
(F(1,4523) = 431.03, p = 1.60e−91). Furthermore, there was a significant
main effect of trial period (F(1,4523) = 35.79, p = 2.36e−9) and a sig-
nificant interaction between contrast and trial period
(F(1,4523) = 77.91, p = 1.51e−18). Post-hoc tests revealed that, in low
contrast, gain during the target period significantly increased (0.032,
95% CI: [0.024, 0.040], p = 3.77e−9), but did not significantly change in
high contrast (0.0062, 95% CI: [−0.017, 0.014], p =0.18; Fig. 6e). These
findings indicate that neuronal gain is not only sensitive to stimulus
contrast, but also increases during the target period of the trial, spe-
cifically in low contrast.

To visualize the gross relationship between gain and behavioral
performance, we first averaged the gain of stimulus-responsive
neurons during the target period of the trial in each session (n = 168
sessions across 13 mice). We then selected only low contrast ses-
sions and split the data by the median gain in the target period,
computing the average psychometric curves for sessions in the
bottom versus the top 50th percentile (Fig. 6f, inset). We observed
that sessions with high gain had steeper slopes and lower thresholds
than sessions with low gain (Fig. 6f). To quantify the relationship
between gain and task performance, we fit a mixed-effects model
using contrast and gain during the target period as fixed effects,
mouse identity as a random effect, and either psychometric slopes
or thresholds as the dependent variable. This approach allowed us
to separate the neuronal and behavioral impact of contrast gain
control from the effect of session-to-session fluctuations in gain.We
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tested whether gain and contrast were significant predictors of
behavioral performance by comparing the full model to null models
excluding either gain or contrast. We found that the model
including gain was a better predictor of behavioral threshold than
was the null model (Likelihood Ratio Test: χ2(1) = 5.82, p = 0.016),
indicating that thresholds decreased by 3.046 dB SNR ± 1.24 (SEM)
for every 10% increase in gain. Using a similar procedure, we found
that contrast was also a significant predictor of behavioral threshold
(Likelihood Ratio Test: χ2(1) = 5.84, p = 0.038), with the step from
high to low contrast inducing a decrease in behavioral thresholds of
3.27 dB SNR ± 1.33 (Fig. 6g).

We applied the same analysis to test the effects of contrast and
gain on psychometric slope (Fig. 6f), again finding that gain sig-
nificantly predicted psychometric slopes (Likelihood Ratio Test:
χ2(1) = 6.96, p = 0.0083), such that the psychometric slope increased
by 0.16 dB/PC ± 0.060 for every 100% increase in gain. However, con-
trast did not significantly improve the fit of this model (Likelihood
Ratio Test: χ2(1) = 2.28, p =0.13; Fig. 6h). This result is not entirely
unexpected, given that we observed no effect of contrast on psycho-
metric slopes when comparing across sessions with different target
distributions (Supplementary Fig. 2b), which is true of the sessions
used in this analysis.

Our findings suggest that the relationship between gain and
behavioral performance is shaped by two sources: contrast-induced
gain control andfluctuations ingain fromsession to session. To further
disentangle the relationship between these two sources of behavioral
modulation, we repeated the mixed effects models, this time using
gain during the adaptation period as the predictor of interest. We
hypothesized that gain in this period should not be predictive of
behavioral performance, as there were no targets presented during
this portion of the trial. We found that this was the case; we did not
observe any predictive relationship between gain estimated in this

period and behavioral performance (Supplementary Fig. 8b–d; Sup-
plementary Table 1). In summary, we found that cortical gain was
modulated by both stimulus contrast and trial period, increasing when
contrast is low andwhenmiceweredetecting targets. Furthermore, we
found that behavioral performancewaspredictedby both the stimulus
contrast and by session-to-session changes in cortical gain during
target detection.

Discussion
Auditory environments exhibit complex statistical properties that
change over time. Changes in the dynamic range, or contrast, of
acoustic inputs poses a challenge to the auditory system, which is
composedof neuronswith limiteddynamic range. The efficient coding
hypothesis predicts that as stimulus contrast changes, neurons should
adjust their gain in order to match their limited dynamic range to that
of the stimulus distribution1. Multiple studies have demonstrated that
neurons throughout the auditory pathway exhibit such contrast gain
control14,16,19. Additionally, contrast gain control is theoretically bene-
ficial for separating signals frombackgroundnoise16,20, implicating that
this phenomenon should underlie perception in noisy environments.
Whereas recent work has demonstrated a link between contrast gain
control and changes in behavioral discrimination in humans19,21, it is
unclear how cortical gain directly relates to behavior, as neuronal
responses and behavior were not observed simultaneously. Finally,
recent work has highlighted the dynamic nature of efficient neuronal
codes22,23, and it is unclear whether the observed neuronal dynamics
reflect what is predicted to be theoretically efficient, and how the
observed dynamics affect behavior.

Our study addressed these open questions by developing a nor-
mative framework to predict how efficient gain adaptation should
affect behavior, and then testing those predictions using a combina-
tion of behavior, chronic recordings, and cortical manipulations. First,

CA121-200708-32

Scene 1

Scene 2

Scene 3

Scene 4

Scene 5

0 1 2 3 4
Time (s)

20

30

40

F
R

 (
H

z) GC-LN (r=0.813)
Static-LN (r=0.607)
spikes

-0.30 Time (s)

4

64

F
re

qu
en

cy
(k

H
z)

-0.2

0

0.2

-40 0 40
Filter Response

0

120

F
R

 (
H

z)

0 0.1 0.2
Gain

0

20

P
sy

ch
om

et
ric

 T
hr

es
ho

ld
(d

B
 S

N
R

)

0 0.1 0.2
Gain

0

0.15

P
sy

ch
om

et
ric

 S
lo

pe
(P

C
/d

B
)

a e f

b c

d

Prediction
Observed

Static
Nonlinearity

GC
Nonlinearity

STRF 

LN Model

0 0.6Gain
0

1500

C
el

l C
ou

nt

S
es

s.
 C

ou
nt

g h

-0.1

0

0.1

0.2

0.3

G
ai

n

Low
Contrast

High
Contrast

ns****
0 10 20

0.4

0.6

0.8

1

0.05 0.2Gain
target

0

15

Target Level (dB SNR)

Psychometric performance
split by median gain

Adaptation Period Target Period

A T A T

P
er

ce
nt

 C
or

re
ct

*
*

**ns

****
Trial-Wise Stimulus:

Spikes:

Contrast:

Fig. 6 | Cortical gain predicts session-to-session variability in behavioral per-
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we developed a normative model based on efficient coding22,23, which
predicted that: 1) Detection thresholds of targets should be lower in
low contrast than in high contrast; 2) Sensitivity to changes in target
level should be greater in low contrast relative to high contrast; and 3)
Detection should change asymmetrically over time: increasing slowly
after a switch to low contrast, but decreasing rapidly after a switch to
high contrast (Fig. 1). Then, we derived a form of Poisson GLM to
confirm that gain control dynamics in auditory cortex are indeed
asymmetric (Fig. 2). To behaviorally test the predictions of the nor-
mative model and GLM, we trained mice to detect a target embedded
in dynamic random chords while manipulating the contrast of the
background between high and low contrast. As predicted by the nor-
mative model, mice had lower detection thresholds and were more
sensitive to changes in target level in low contrast. Behavioral adap-
tation was also asymmetric, decreasing rapidly after a switch to high
contrast, and increasing slowly after a switch to low contrast, in
agreement with our model (Fig. 3). Furthermore, we found that AC is
necessary for this detection-in-background task (Fig. 4). When
recording in AC, we found that the variability in neuronal population
responses significantly predicted session-by-session variability in
behavior above and beyond variability induced by stimulus features,
and we demonstrated that target discriminability adapted asymme-
trically, as predicted (Fig. 5). Finally, we found that the amount of
cortical gain also predicted behavioral performance on a session-to-
session basis, independently of the effect of contrast (Fig. 6). Taken
together, these results support our hypothesis that the dynamics of
gain control support efficient coding in auditory cortex andpredict the
perception of targets embedded in background sounds.

The role of auditory cortex in behavior hasbeen subject of debate.
A number of prior studies found that auditory cortex was not required
for relatively simple behavioral tasks such as frequency discrimination
or detection28,29. Rather, many studies found that auditory cortex is
primarily involved in more complex behaviors, such those requiring
temporal expectation30, localization31, or discrimination of more
complex sounds32–34. Consistent with previous findings35, we found
that AC inactivation selectively impaired detection of targets in a noisy
background, but did not impair detection of targets in silence (Fig. 4).
Furthermore, neuronal activity in ACpredicted variability in behavioral
performance (Figs. 5 and 6). This set of results establishes that AC is
necessary for the detection of targets in background noise and sup-
ports the more general notion that AC is required for more difficult
auditory tasks.

While the previous work demonstrates the necessity of auditory
cortex in behavioral performance, the brain areas and mechanisms
supporting the transformation from stimulus to decision are an active
field of study36,37. By recording neuronal activity during the task, we
were able to leverage behavioral variability to show that task perfor-
mance covaried with representations of targets within small neuronal
populations (Fig. 5), andwith cortical gain (Fig. 6). There is a largebody
of literature relating cortical codes to behavioral variability: early stu-
dies in the visual system suggested that information from relatively
small numbers of neurons was sufficient to match or outperform ani-
mal behavior in psychophysical tasks38–40 and that behavioral choice
can be predicted from activity in sensory areas27,40. These accounts
suggested that variability in bottom-up sensory encoding drives the
variability in behavioral output. However, more recent work suggests
that variability in sensory areas is driven by top-down influences41–44,
which are modulated by attention and learning45–48. A recent study
imaging tens of thousands of neurons in the visual cortex supports this
notion, finding that cortical representations had higher acuity than
behaving mice, yet did not correlate with behavioral performance,
suggesting that perceptual discrimination depends on post-sensory
brain regions49.

Our results suggest that bottom-up adaptation to stimulus sta-
tistics shapes behavioral output: We observed asymmetric time

courses of target discrimination following a change in contrast (Fig. 3).
The asymmetric adaptation in behavioral performance was consistent
with predictions derived from a normative account of contrast gain
control (Fig. 1), resembled contrast gain adaptation in auditory cortex
in the absence of behavior (Fig. 2), and was evident in patterns of
target-driven activity in auditory cortex during task performance
(Fig. 5). Indeed, there have been other studies demonstrating that
individual differences in sensory-guided behaviors are reflected in
cortical activity50,51, are bidirectionally modulated by cortical
manipulation52,53, and can be predicted from tuning properties in
auditory cortex54,55. While our results cannot rule out top-down input
as the causal driver of sensory decisions, they do support the notion
that the sensory information uponwhich decisions aremade is shaped
by neuronal adaptation, which thereby affects behavioral outcomes.

Neurons throughout the auditory system adapt to the statistics of
the acoustic environment, including the frequency of stimuli over
time56,57, more complex sound patterns24,58, and task-related or rewar-
ded stimuli59–64. In this study, we focused on contrast gain control as a
fundamental statistical adaptation that relates to efficient coding14,17–19.
Previous work identified that responses to targets presented after
opposing changes in contrast were asymmetric14, a result consistent
with optimal estimation of stimulus variance25. We observed similar
asymmetric dynamics in a normative model of contrast gain control
(Fig. 1), which suggests that previous observations of asymmetric
adaptation are a result of efficient encoding of the background
stimulus.

Inspired by this and other previous work59, we intentionally
designed our stimuli using unbiased white-noise backgrounds, which
allowed us to fit encoding models to our data. In this study, we
developed an application of Poisson GLM that allowed us to quantify
gain dynamicsdirectly from responses to continuousDRC stimuli. This
approach allowed us to verify that gain adaptation in auditory cortex is
asymmetric (Fig. 2), and we found that this model better predicted
neuronal activity when compared to previous models (Fig. 2, Supple-
mentary Fig. 3). While we focused on the multiplicative influence of
contrast in this study, the GLM presented here could in theory be
applied to any other time-varying signal that modulates neuronal gain,
such as movement65,66, arousal67,68, or experimental interventions such
as optogenetics69–72

Additionally, previous studies found that contrast gain control
was predictive of behavioral performance10,19. Here, we extended these
findings by examining the dynamics of this process and found that
behavioral detection of targets also adapted asymmetrically (Fig. 3). In
addition to confirming previously reported effects of contrast on
psychometric curves, these results suggest that the dynamics of con-
trast gain control influenced task performance. Pursuing this further,
we estimated cortical gain asmice performed the task, and discovered
a predictive relationship between stimulus contrast, gain in auditory
cortex, and behavioral performance (Fig. 6). These results suggest two
sources of cortical gain modulation: 1) Bottom-up adaptation to sti-
mulus contrast (i.e. contrast gain control), and 2) session-to-session
modulation of gain. Previous studies have demonstrated this latter
phenomenon, suggesting that top-down gain modulation underlies
attention41,42,73 and the maintenance of optimal behavioral states67,68.
Our results suggest that both contrast gain control and session-to-
session fluctuations in gain modulate behavior, providing a starting
point for dissecting the neuronal mechanisms underlying these two
forms of gain modulation.

While this work and other studies have established contrast gain
control as a fundamental property of the auditory system, the neuro-
nal mechanisms driving gain adaptation at a cellular level remain
unclear. Previous work theorized that cortical feedback was respon-
sible for contrast gain control in early areas16,20, but recent experiments
disproved this hypothesis19. In the current study, we have likely
recorded from a mixed population of excitatory and inhibitory
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neurons, the latter of which exhibit specific roles in adaptation74,75.
While specific inhibitory neuronal subtypes facilitate divisive or sub-
tractive control of excitatory responses in visual69,70 and auditory
cortex71,72, the role of these interneurons in contrast gain control has
been inconclusive18. Additionally, our results highlight the distinction
between stimulus driven gain control and stimulus-invariant gain
control which covaried with behavior from session to session (Fig. 6).
Whether these two forms of gain control share common neuronal
substrates is unclear. By combining cell-specific optogenetic methods
with behavioral tasks, future studies may explore and test the causal
role of local circuits and top-down modulation in gain control and
behavior.

Combined, our results develop a framework and provide support
for the role of contrast gain control in behavior. The efficient coding
hypothesis has emerged as one of the leading principles in computa-
tional neuroscience that has shaped our understanding of neuronal
coding, architecture, and evolution1,76–79, and prior research found that
human behavior follows principles of efficiency19,80. Here, we focused
on a well-studied form of efficient coding, contrast gain control, and
developed a framework to link the dynamics of efficient neuronal
coding with behavioral performance. While the mechanisms of con-
trast gain control in auditory cortex are yet to be discovered , this
study highlights potential top-down and bottom-up influences on
cortical gain, which may or may not share common neuronal sub-
strates. We believe that the theoretical frameworks and modeling
methods presented here will be broadly applicable in future studies of
neuronal gain control, a fundamental function of the nervous system.

Methods
Animals
All experiments were performed in adult male (n = 19) and female
(n = 19) C57BL/6 (Stock No. 000664) or B6.CAST-Cdh23Ahl+ (Stock No.
002756) mice (The Jackson Laboratory; age 12–15 weeks; weight
20–30 g). Some of the mice used in these experiments were crossed
with other cell-type specific -cre lines, as detailed in Supplementary
Table 2. Allmicewere housedwith, atmost, fivemiceper cage, at 28 °C
on a 12-h light:dark cycle with food provided ad libitum, and a
restricted water schedule (seeWater restriction). All experiments were
performedduring the animals’dark cycle. All experimental procedures
were in accordance with NIH guidelines and approved by the Institu-
tional Animal Care and Use Committee at the University of
Pennsylvania.

Surgery
Mice were anesthetized under isoflurane (1-3%). Prior to implanta-
tion, all mice were administered subcutaneous doses of buprenor-
phine (Buprenex, 0.05–0.1 mg/kg) for analgesia, dexamethasone
(0.2mg/kg) to reduce brain swelling, and bupivicane (2mg/kg) for
local anesthesia. In mice implanted with microdrives, two ground
screws attached to ground wires were implanted in the left frontal
lobe and right cerebellum, with an additional skull screw implanted
over the left cerebellum to provide additional support. A small
craniotomy was performed over the target stereotactic coordinates
relative to bregma, −2.6 mm anterior, −4.3mm lateral. Either cus-
tom 16-channel microdrives, 32-, or 64-channel shuttle drives (cite)
holding tetrode bundles of polyimide-coated nichrome wires were
chronically implanted over auditory cortex, and tetrodes were
lowered 800 um below the pial surface. The exposed tetrodes were
covered with GelFoam (Pfizer) or sterile silicone lubricant and
sealed with Kwik-Cast (World Precision Instruments). The plastic
body of the microdrive and a custom stainless-steel headplate were
secured to the skull using dental cement (C&B Metabond) and
acrylic (Lang Dental). Mice undergoing only behavioral experiments
were implanted with two skull screws in the cerebellum, and a
headplate was mounted on the skull as previously described. An

antibiotic (Baytril, 5 mg/kg) and analgesic (Meloxicam, 5mg/kg)
were administered daily (for 3 days) during recovery.

Water restriction
Following surgical recovery (3 days post-operation), each mouse’s
weight was monitored for three additional days to establish a baseline
weight. Over thenext sevendays,micewerewater deprived, beginning
with a daily ration of 120 µL/g and gradually decreasing their ration to
40–50 µL/g. During the task, ifmicedid not receive their full ration, the
remainder of their ration was provided in their home cage. Mouse
weight relative to baseline was monitored during all stages of water
restriction. Additional health signs were used to determine a health
score and subsequent treatment plan if amouse lostmore than 20% of
baseline weight81 as approved by the Institutional Animal Care and Use
Committee at the University of Pennsylvania.

Behavioral apparatus
During the GO/NO-GO task, the mouse was head-fixed in a custom-
built, acoustically isolated chamber. A capacitive touch sensor
(AT42QT1010, SparkFun) soldered to a lick spout monitored lick
activity. Water rewards were dispensed from a gravity fed reservoir,
controlled by a solenoid valve (161T011, Neptune Research) calibrated
to deliver approximately 4-5 µL of water per reward82. Low-level task
logic – such as lick detection, reward and timeout delivery, and task
timing intervals – was directly controlled by an Arduino Uno micro-
processor running custom, low-latency software routines. High-level
task logic, such as trial randomization, stimulus buffering and pre-
sentation, and online data collection and analysis were controlled by
custom MATLAB (r2019a, Mathworks) software communicating with
the Arduino over a USB serial port. Acoustic waveforms were gener-
ated inMATLAB and converted to analog signals via a soundcard (Lynx
E44, Lynx Studio Technology, Inc.) or a National Instruments card (NI
PCIe-6353) and delivered through an ultrasonic transducer (MCPCT-
G5100-4139, Multicomp). The transducer was calibrated to have a flat
frequency response between 3 kHz and 80 kHz using a 1/4-inch con-
densermicrophone (Brüel & Kjær) positioned at the expected location
of themouse’s ear83,84. During electrophysiological recording sessions,
licksweredetected using anoptical interrupt sensor (EE-SX771, Omron
Automation), to prevent lick-related electrical artifacts introduced by
contact with a capacitive sensor.

Behavioral timeline
Each mouse underwent four stages in the behavioral task: 1) water
restriction and habituation, 2) behavioral training, 3) psychometric
testing, and, 4) offset testing. During the induction ofwater restriction,
mice were habituated to head-fixation in the behavioral chambers and
received water through the lick spout, getting a drop of water for licks
separated bymore than 2 s. After themouse began to receive its entire
ration by licking in the booth, behavioral training was initiated (typi-
cally after 1 week). Each mouse was initially trained and tested in one
contrast condition (see Stimuli), with the initial training condition
counterbalanced across mice. Behavioral performance wasmonitored
during training, and mice were considered trained after completing at
least three consecutive sessions with over 80% percent correct. After
completing training, behavioral thresholds were measured during at
least three sessions in which psychometric stimuli were presented (see
Stimuli). After estimating the behavioral threshold for each mouse,
offset stimulus sets were generated using threshold-level targets. After
completion of at least three sessions in the offset task, eachmousewas
then retrained on the remaining contrast condition. Upon reaching the
training criterion of 80% in the new contrast condition,micewere then
tested in the psychometric and offset tasks as previously described.
Formice inelectrophysiological experiments, this sequenceof training
and testing was continued until the recording site yielded less than
three units, or until the mouse stopped performing in the task.
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Stimuli
All stimuli were created inMATLAB and sampled at 192 kHz or 200 kHz
and 32-bit resolution. A set of dynamic random chords (DRCs) were
created with different contrasts, similarly to those described in pre-
vious studies14,17,19. To construct a DRC, amplitude modulated pure
tones were generated at multiple frequencies and then superimposed
to create a chord. In some experiments, 34 frequencies were sampled
between 4 and ~40 kHz in 1/10 octave steps, in the remaining experi-
ments, 33 frequencies were sampled between 4 and 64 kHz in 1/8
octave steps. The amplitude envelope of each tone was generated as
follows: every 25ms, amplitudes for each frequency were sampled
from a uniform distribution with a mean of 50 dB and a width of ±5 dB
in low contrast or ±15 dB in high contrast. Between each 20ms chord,
the amplitude envelope of each frequency band was linearly ramped
over 5ms to the amplitude value for the next chord, such that the total
duration of each chord and its ramp was 25ms. To synthesize the
stimuli, amplitude envelopes were multiplied by a sine wave of their
respective frequencies, and summed to produce the final waveform.
Each time a set of DRCs was generated, 5 unique random number
generator seeds were used to restrict the background noise to 5 dis-
tinct scenes (see raster in Fig. 6 for an example of spike-locking to the
repeated scenes).

In all stages of behavioral training and testing, stimuli created for
each trial consisted of a DRC background containing a change in con-
trast, and the presence or lack of a target at a delay after the change in
contrast. Each trial began with 3 seconds of DRC background from one
contrast, followed by a switch to the other contrast. Targets consisted
of afixed chord composed of 17 frequencies pseudo-randomly sampled
from the frequencies contained in the DRC background, such that the
target frequencies were uniformly distributed across the frequency
range of the background. To add targets to the background noise, the
target amplitude at each target frequency was simply added to a single
chord in the amplitude envelope of the background, and linearly
ramped: this procedure ensured that target timingwasperfectly aligned
to changes in the background noise, removing asynchronous timing
cues that could be used to detect the target. Target amplitudes are
described in values of signal-to-noise ratio (SNR) relative to the average
level of the background noise (i.e. a 50dB target embedded in 50dB
backgroundwouldhave anSNRof0dB). See SupplementaryTable 3 for
SNRs used for each mouse. In all trials, targets were embedded after a
change in thebackgroundcontrast,with adelay and level dependent on
the current training or testing stage.

Efficient coding model
We simulated a model neuron that encodes incoming stimuli via an
adapting neuronal nonlinearity. Stimuli were drawn from a Gaussian
distribution whose mean μ was fixed over time but whose standard
deviation σt could switch over time between a low and a high value
(σt = σ

L and σt = σ
H , respectively). At each time t, a stimulus st was

drawn from the distribution p st ,∣,σt

� �
=N st ;μ,σ

2
t

� �
, transformed via a

saturating nonlinearity of the form 1= 1 + e�k st�s0ð Þ� �
, distorted by

Gaussian noise with variance σ2
n, and finally discretized into N discrete

levels to generate a response rt . This discrete response was linearly
decoded to extract an estimate ŝt of the current stimulus: ŝt =p1rt +p0.
The recent history of L stimulus estimates was used to update an
estimate σ̂t of the underlying standard deviation: σ̂t = std ŝt�L+ 1 : ŝt

� �
.

The estimate σ̂t was then used to select the parameters of the encoder
(k,s0) and the decoder (p1,p0) on the next timestep. The encoding and
decoding parameters were chosen to minimize the expected error in
decoding stimuli given the neuron’s current estimate of the underlying
standard deviation: k,s0,p1,p0 = argminhðŝt � stÞ2ip st ∣σ̂tð Þ22,23.

The parameters of the encoder and decoder were adapted based
on a background stimulus with amean μB that was fixed over time and
a standard deviation σB that switched between low and high values σL

B
and σH

B , respectively. We used this adapting nonlinearity to determine

howwell thismodel neuron could discriminate target stimuli from this
background. Target stimuli were sampled from aGaussiandistribution
with a fixed mean μT and with a variance σT that was scaled in pro-
portion to the variance of the background (σL

T = fσ
L
B and σH

T = fσH
B ,

respectively). At each timestep, we computed the Bhattacharyya
coefficient (BC) of the response distributions produced by back-
ground versus target stimuli: BC =

P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p rB
� �

p rT
� �q

. We used 1� BC as
our measure of discriminability.

We simulated the behavior of this model using a background
“probe” stimulus whose standard deviation switched every T time-
steps. We simulated Nc cycles of this probe stimulus, where each
cycle consisted of T timesteps in the low state, followed by T
timesteps in the high state. This yielded timeseries of the gain k and
offset s0 of the adapting nonlinearity, as well as distributions of the
neuronal response to the background and target stimuli at each
timepoint following a switch in standard deviation. We averaged the
gain and offset across cycles to obtain the average properties of the
encoder at each timepoint following a switch. We used the dis-
tribution of responses to target and background stimuli, measured
across cycles, to compute the discriminability at each timepoint
following a switch. All simulations were performed with the fol-
lowing values: T = 50, Nc = 1,000, μB =0, μT = 0 to 3 in 0.25 steps,
σL
B = 1, σ

H
B =3,f =0:25, σ2

n =0:01, N = 15, L= 12. For Fig. 1g, model dis-
criminability in each contrast was fit with a logistic function to
estimate the sensitivity and threshold of themodel. To approximate
the stimulus conditions used in the offset task, the target thresholds
for each contrast were then used to select target levels to plot dis-
criminability over time (μL

T = 1:50, μ
H
T =2:25; Fig. 1f).

To compare behavioral performance to the model, we quantified
the “psychometric performance” of the model by fitting model dis-
criminability over time with a logistic function:

y = γ + 1� γ � λð Þ* 1
1 + eα�βx

ð1Þ

where α is the x-offset of the function, β determined the sensitivity
of the function, γ determined the guess rate (lower bound), λ
determined the lapse rate (upper bound) and x was stimulus level.
α=β determined the threshold of this function, defined as the level
corresponding to the steepest part of the curve. This function was
fit to behavioral or neuronal performance using constrained
gradient descent (fmincon in MATLAB) initialized with a 10 × 10
grid-search of parameters α and β.

To characterize adaptation time constants, adaptation curves
were fit with an exponential function

y=a+b*e�
t
τ ð2Þ

where a determined the y-offset of the function, bwas amultiplicative
scaling factor, and τ was the time constant of the exponential in units
of time t. This function was fit to behavioral or neuronal responses
using constrained gradient descent initialized with a 10 × 10 × 10 grid
search across all three parameters.

To measure the effect of stimulus contrast on parameters of
interest, we computed a contrast modulation index (CMI), which
measured the relative change in the parameter between low and high
contrast:

CMI =
xH � xL

xL
ð3Þ

where x is theparameter in question and subscriptsH and L denote the
value of that parameter in high and low contrast, respectively. The
resulting index is 0 if there is no change, 1 if xH is two times larger than
xL, and is −0.5 if xL is two times xH .
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Behavioral task
We used a GO/NO-GO task to measure the detectability of targets in
background. In this task, each trial consisted of a noise background
with a contrast shift, along with the presence or absence of a target
after the change in contrast. Mice were trained to lick when they
detected a target (hit), or to withhold licking in the absence of a target
(correct reject). This behavior was reinforced by providing a 4–5 µL
water reward when themouse licked correctly (hit), and by initiating a
7–10 s timeout when the mouse licked in the absence of a target (false
alarm). Any licks detected during the timeout period resulted in the
timeout being reset. In a subset of mice, we introduced an additional
trial abort period coincident with the first part of the contrast back-
ground, before the contrast switch. Any licks detected in this abort
period resulted in the trial being repeated after a 7–10 s timeout, until
themousewithheld from licking during this period. In this task, misses
and correct rejects were not rewarded or punished. Trials were sepa-
rated by a minimum 1.5 s inter-trial-interval (ITI). To discourage
spontaneous licking, licks were monitored during this period, and if
any licks occurred the ITI timer was reset.

To prevent mice from predicting the target, we varied the timing
of the target relative to the contrast shift. This required a method for
estimating hit rates and false alarm rates at different times during each
trial, and to reward and punish the animal during these times in an
unbiased manner. To approach this issue, we considered licks only
during a 1 s responsewindow after a target presentation (e.g. if a target
was presented 500ms post-contrast-switch, the response window
persisted from 500 to 1500ms post-contrast-switch). To apply this
method to background-only trials, in which no targets were presented,
we consideredbackground trials to be target trials containing infinitely
small target amplitudes. For each background trial, we assigned a
response window with equiprobable delay matched to the target
conditions and considered only licks within those “target” response
windows. Thus, over the course of a session, we randomly sampled lick
probabilities in background trials during the same temporal windows
as those considered during target trials. Using this scheme, we treated
target and background-only trials identically, and estimated hit rates
and false alarm rates over time in an unbiased manner.

Each mouse performed three stages in the behavioral task: train-
ing, psychometric testing, and offset testing. During the training task,
trials consisted of two types, background-only trials or target trials
presented with equal probability. To facilitate learning, we selected
target SNRs at thehighest endof the rangedescribedpreviously: in low
contrast training sessions, targets were 16 dB SNR, and in high contrast
training sessions, targets were 20dB SNR. To prevent response bias as
a function of target timing, we randomly varied the target delay
between 250, 500, 750 and 1000ms after the contrast change in each
trial. During the psychometric testing task, there were 7 trial types
consisting of background-only trials and target trials spanning six
different SNRs (Supplementary Table 3). Based on behavioral piloting,
we presented high SNR trials with a greater probability, to ensure that
mice were consistently rewarded during the task. In low and high
contrast psychometric sessions, the probability of a background trial
was 0.4, the probability of the four lowest target SNRs was 0.05 each,
and the probability of the two highest target SNRs was 0.2 each. As in
training, target timingwas varied randomly between 250, 500, 750 and
1000ms after the contrast change in each trial. After completing at
least three sessions of the psychometric task, stimuli were generated
for the offset testing task. This task consisted of 15 unique trial types: 3
target levels (background trials, threshold target trials, and high SNR
target trials), and 5 target delays relative to the contrast change (25, 75,
225, 475, 975ms delay). Threshold target amplitudes were determined
individually for each mouse by fitting performance averaged over
several sessions with a psychometric function, and extracting the level
at which the slope of the psychometric curve was steepest. Based on
behavioral piloting, background trials, threshold target trials, and high

SNR target trials were presented with probabilities of 0.4, 0.2, and 0.4,
respectively. Target delay on each trial was selected with equal prob-
ability. In all behavioral stages, trial order was pseudorandomly gen-
erated, such that there were no more than three target or background
trials in a row.

A subset of mice (n = 2), were presented targets in silence (Fig. 4).
To generate this stimulus set without changing the basic structure of
the task or stimuli, we simply took the spectrograms of all stimuli
containing 25 dB SNR targets from the low-to-high contrast stimulus
sessions, and set the stimulus power flanking each target to zero. This
manipulation was only performed in the target period, and the low
contrast adaptation period of the trials remained the same. Thus, the
targets and adaptationperiodswere identical to thosepresented in the
target-in-background task. To vary the difficulty of the task, the level of
the target was attenuated using the following values: −75, −60, −45,
−30, −15, and 0 dB attenuation relative to the 25 dB SNR target. Mice
were previously trained in the target-in-background task prior to per-
forming the target in silence task. Before psychometrically varying the
target attenuation, mice were trained in the new task to criterion
performance. Mice generalized very rapidly to the new task, reaching
97% and94% training accuracy on thefirst day of exposure to targets in
silence (mice CA124 and CA125, respectively).

Chronic muscimol application
A separate cohort ofmice (n = 4) were bilaterally implantedwith 26GA
guide cannulae (PlasticsOne, C315GMN-SPC mini, cut 5mm below
pedestal) in auditory cortex. The surgery was performed as described
above with the following modifications. After the skull was leveled
using a stereotax, two small craniotomies were performed −2.6mm
anterior, ±4.3mm lateral from bregma, over auditory cortex. The
guide cannulae and dummy infusion cannulae (PlasticsOne,
C315DCMN-SPC mini, cut to fit 5mm C315GMN with a 0.5mm pro-
jection depth) were sterilized in an autoclave. The dummy cannulae
were partially screwed into the guide cannulae and placed in a ste-
reotaxic clamp. After zeroing the tip of the guide cannula to the brain
surface, the cannulawas lowered to 500μmbelow the cortical surface.
This depth was chosen because the infusion cannulae (PlasticsOne,
C315LIMN-SPC mini) project 500 μm from the end of the guide can-
nulae when completely inserted, leading to a final depth of 1000 μm –

the location of auditory cortex. The dummy cannulae were then fully
inserted and this procedure was repeated for the next cortical
hemisphere.

Prior to injecting, two injection syringes (Hamilton Syringe, 10μL
Gaslight #1701) and tubing (C313CT tubing 023×050 PE50) were
backfilled with mineral oil. Sterilized infusion cannulae were then
attached to each syringe and ~500 nL ofmuscimol (diluted with 1x PBS
to 0.25mg/mL; Sigma Aldrich, M1523) or 0.9% sterile saline was drawn
up into the injection cannulae using a dual injector (Harvard Appara-
tus, Pump 11 Pico Plus Elite). The mouse was then headfixed and the
dummy cannulae were removed and sterilized. The loaded infusion
cannulae were then screwed all the way into the guide cannulae and
400nL ofmuscimol or salinewas infused bilaterally at a rate of 250nL/
minute. The infusion cannulae were then replaced with the dummy
cannulae and the mouse rested in its home cage for 30–45min before
beginning the behavioral session.

Acute electrophysiological recordings
For acute recordings used to fit the GC-GLM model (Fig. 2), neuronal
signals were recorded from n = 1 awake, untrained mouse. Prior to the
recording session, the mouse was anesthetized and a headpost and
groundpinwere implanted on the skull (see Surgery). On the day of the
recording, themouse was briefly anesthetizedwith 3% isoflurane and a
small craniotomy was performed over auditory cortex using a dental
drill or scalpel (~1mm× 1mm craniotomy centered approximately
1.25mm anterior to the lambdoid suture along caudal end of the
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squamosal suture). A 32 channel silicon probe (Neuronexus) was then
positionedperpendicularly to the cortical surfaceand lowered at a rate
of 1–2μm/s to a final depth of 800–1200μm. As the probe was low-
ered, trains of brief noise bursts were repeated, and if stimulus locked
responses to the noise bursts were observed, the probe was deter-
mined to be in auditory cortex. The probe was then allowed to settle
for up to 30min before starting the recording. Neuronal signals were
amplified and digitized with an Intan headstage (RHD 32ch) and
recorded by an openEphys acquisition board85 at a rate of 30 kHz.

For this experiment, the mouse was presented with 3 s DRCs
alternating between low and high contrast (uniformdistributionwith a
mean of 50 dB and a width of ±5 dB in low contrast or ±15 dB in high
contrast at a chord rate of 25ms, as described in Stimuli). In order to
accuratelyfit theGLM in anunbiasedmanner, these stimuliwerehighly
random, composed of 100 unique chord patterns for each contrast
(Supplementary Fig. 2i, j). For eachof the two recording sites, 5 repeats
of this stimulus set were played.

Behavioral electrophysiological recordings
Neuronal signals were acquired from awake, behaving mice as they
performed the psychometric and offset testing tasks described pre-
viously. Chronically implanted, 16-, 32-, or 64-channel microdrives85,86

were connected to one or two 32 channel Intan amplifier headstages.
Amplified signals were recorded at 30 kHz using an openEphys
acquisition board via an SPI cable, where the signals were digitized.

For all recordings, broadband signals were filtered between 500
and 6000Hz, offset corrected, and re-referenced to themedian across
all active channels. The preprocessed data was then sorted using
KiloSort87 or KiloSort2 and the resulting clustering was manually cor-
rected in phy2 according to community-developed guidelines. The
resulting units were labeled as single units if they exhibited a clear
refractory period and did not need to be split. Splitting assessments
were made through manual examination of principle component fea-
tures for the two best channels of a cluster. If twonoticeable clusters in
feature space were evident in a unit, the unit was either manually split,
or classified as a multiunit.

Generalized linear model
To justify the formofGLMusedhere, wediscuss a howamodel neuron
could implement gain control in the simplest terms, and then structure
our inference model to extract the parameters of this model neuron.
Wewill assume that the activity of themodel neuron is driven by three
sources: 1) stimulus drive, 2) stimulus contrast, and 3) the multi-
plicative interaction between the two, which we use to define the gain
(for a formal definition of this forwardmodel and the inferencemodel,
see Supplementary Information).

As discussed previously, the stimulus used in our experiments is
composed of many frequencies that change in loudness in discrete
time steps:

Xt,f ∼U μ,σt

� �

where Xt,f is the stimulus spectrogram that varies as a function of time
t and frequency f . Each time and frequency bin of X is sampled from a
uniform distribution defined by an average value μ and contrast σt .

We assume that the hypothetical neuron responds selectively at
some frequency and time lag, defined by a filter, or STRF βh,f with
history h and frequency f components. Given β, we can define the
stimulus drive xt as

xt =Xtβ ð4Þ

where at each time t, Xt is a row vector of size F frequencies times H
lags (i.e. the “unrolled” lagged stimulus spectrogram) and β is the STRF
unrolled to a single column vector of the same size.

In the spirit of efficient coding theory, and as shown in previous
work, we assume that the gain g of the neuron should be inversely
proportional to the contrast, such that g σð Þ / 1=σ (i.e. when contrast is
low gain should be high, and vice-versa). We also define “neutral” gain
to be the average of the gain of the neuron in low and high contrast.
Putting these two features together, we can summarize the gain of the
neuron as

g σð Þ= �σ
σt

ð5Þ

where �σ is the harmonic mean of the contrast in the low and high
conditions (see Supplementary Information). In the case of a 3-fold
change in contrast, this function constrains the gain of the neuron
between 0.5 and 1.5, with a neutral value of 1. Asmentioned previously,
we consider gain to be the multiplicative interaction between the
stimulus drive and the contrast, such that the contribution of gain
control to the response of the neuron is related to xt � �σ

σt
.

To summarize, weconsidered ahypothetical neurondriven by the
stimulus according to a STRF β and by the interaction between the
stimulus drive and the contrast xt � �σ

σt
. To infer the relative weights of

each of these components of the neuronal response, we defined a
Poisson GLM with an intercept term and the following predictors:

xt ,
�σ

σt
, xt �

�σ

σt
ð6Þ

In other words, themodel is composed of a stimulus predictor xt ,
a contrast predictor �σ=σt , and their interaction. Therefore, the GLM
models the firing rate λ at time t as a Poisson distribution with the
following mean:

λt = exp β0 + xtβ1 + xt �
�σ
σt

β2 +
�σ
σt

β3

� �
ð7Þ

where β0 . . .β3 are the parameters to be inferred. Based on our beha-
vioral data (Fig. 3) and the predictions of the efficient coding model
(Fig. 1), we expected the influence of contrast on neuronal gain to be
asymmetric and smooth. To enable the GLM to capture both of these
qualities, we first defined the contrast predictors from a set of cubic
B-spline temporal basis functions, then defined separate contrast
predictors for transitions to lowandhigh contrast. Incorporating these
changes, we can redefine Eq. (7) above as

lnλt = β0 + xtβ1 + xt � C0
tβ2 +C

0
tβ3 ð8Þ

where � denotes element-by-element “broadcasting” multiplication
and C0

t is a matrix of contrast predictors �σ=σt convolved with a set of
basis functions and separated by contrast transitions (see Supplemen-
tary Information). For the sake of clarity, note that in the expression
above, β0 is a number, x is a column vector of length T , β1 is a number,
C0 is a T -by-2B matrix, and β2 and β3 are column vectors of length 2B,
where B is the number of splines.

So far, we outlined a hypothetical neuron which implements gain
control, and aGLMwithwhichwecan approximate the behavior of this
neuron. Next, we describe how to use the fitted parameters to quantify
the gain of the neuron. Conceptually, an increase or decrease in the
gain of the neuron is analogous to more or less sensitivity to small
changes in the stimulus. Basedon this intuition,we focusedonhow the
response of the neuron (as modeled by a fitted GLM) is expected to
change between conditions where the gain is expected to contribute
(i.e. in the presence of gain control) and where it is not (i.e. in the
absence of gain control, where gain is “neutral”). Following this logic,
we derived a definition for gainwt as the ratio between the sensitivity
of the fitted model with changes in contrast, compared to the
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sensitivity of the samemodel when the contrast is at a reference value,
which we defined previously as wt = 1:

wt =
β1 +C

0
tβ2

β1 +C
0β2

ð9Þ

wherewt is the estimated gain at time t, and C0 is a reference contrast
design matrix identical to C0

t except that all non-zero elements are set
to 1 (see Supplementary Information for full derivation of wt).

To fit the model, we implemented a two-step procedure. In the
first step, the STRF β of the neuron was estimated according to the
model

lnλt =α +Xtβ ð10Þ

For the second step, we calculated the stimulus drive as described
in Eq. (4), and then fit Eq. (8) to the data for each neuron using glmfit in
MATLAB (v2018a). This entire fitting procedure was 10-fold cross-
validated with folds stratified across trials of each contrast and run in
parallel on a high performance computing cluster using custom BASH
scripts (v3.2.57(1)). In the first step, we fit the STRF β with F frequency
bins according to the stimulus spectrogram (F = 33 or 34, see Stimuli)
and a history window of 300ms (H = 12). When fitting the full model,
we defined the contrast design matrix C0

t to capture 1000ms of con-
trast history around each transition (H0 = 40), convolved with a set of
B-spline temporal basis functions88 (here, we used B-splines with a
degree of 3 and 3 equally-spaced knots, constrained to go smoothly to
zero at the longest lag, which implied that B = 4).

To validate themodel, wefirst simulated neurons according to the
forward model outlined above (Supplementary Figure 2a) while vary-
ing the amount of gain control and the temporal trajectory of gain in
different simulation runs.We found that the GLM accurately predicted
the STRF shape, spike rates and gain trajectories across a variety of
simulation parameters (Supplementary Fig. 2c, e–h). For a detailed
description and discussion of the simulation results, see Supplemen-
tary Information and Extended Data Table 4.

Behavioral and neuronal detection performance
To calculate performance in the target-in-background detection task
we adopted commonly used signal detection theory methods38,89 to
estimate the ability of an ideal observer to discriminate between two
sensory distributions: in our case, a distribution for target trials and a
distribution for background trials. When analyzing behavior, we
computed the percent correct performance of an ideal observer90 as a
function of the probability of hits and false alarms:

pc= z�1 z Hð Þ � z FAð Þffiffiffi
2

p
	 


ð11Þ

where z�1 is cumulative probability of the normal distribution
(normcdf in MATLAB), z is the inverse of the normal distribution (i.e.
the z-score, norminv in MATLAB), H is the hit rate, and FA is the false
alarm rate. For psychophysical performance, hit rates and false alarm
rates near 0 and 1 were adjusted using the log-linear rule91, to reduce
biases in performance estimation resulting from low numbers of trials.

To calculate neuronal performance in the same reference frameas
the behavior, we employed similar ideal observer techniques. First,
neuronal responses (either spike rates of single units, or population
projection values), were averaged in a 100ms window post target
onset (for background trials, this window was randomly chosen on
each trial to coincide with target presentation times on target trials).
Then, using the distributions of responses during target and back-
ground trials, we computed receiver-operating-characteristic curves
and took the area under the curve (AUC) as the percent correct of an
ideal observer discriminating between the target and background

distributions. To determine whether the AUC value for a given set of
trial distributions was significantly different from chance, we per-
formed a bootstrap procedure where we sampled from all the trials
with replacement 500 times and recomputed AUC for each sample. If
the 95% confidence intervals for this bootstrapped distribution did not
include chance (.5), we defined that AUC value as significant. For
population analyses which generated single-trial predictions, neuronal
hit and false alarm rates were transformed to percent correct as
described above.

Population response metrics
On sessions where three or more neurons were simultaneously
recorded, we used a population vector technique26 to estimate the
ability of neuronal populations to discriminate targets from back-
ground. First, spike rates in each trial were averaged in a 100ms win-
dow post-target onset. Then, using a leave-one-out procedure, we
computed a trial averaged population vector for target trials, vT , and a
separate average population vector for background trials, vB. We then
estimated the coding direction in high dimensional neuronal space
that best separated the target and background responses: CD = vT �
vB: The held out trial was then projected along this dimension, by
taking the population response vector on that trial vtrial andprojecting
it along the estimated coding direction using the dot product:
projection value= vtrial*CD. This procedure was repeated holding out
each trial, and estimating the coding direction from the remaining
trials. For psychometric testing sessions, the target responses from the
two loudest target levels were used to estimate coding direction, and
in offset testing sessions the target responses from the high SNR target
trials were used. After computing projections for every trial, the
resulting matrix was normalized between 0 and 1.

Population classifier
Based on previously described methods27, we used a criterion-based
decision rule to estimate how a hypothetical down-streamneuronmay
read out the neuronal activity of a population of neurons. As before,
trial distributions of neuronal responses to targets or backgroundwere
created from the average activity in a 100ms window post-target.
Then, we sampled 100 criterion values between the minimum and
maximum response, and for each criterion estimated the proportion
of correct trials under twodecision rules: 1) report target present if the
response is greater than the criterion, or, 2) report target present if the
response is less than the criterion. By assessing these two decision
rules, neurons that were suppressed by target presence were treated
equally to neurons that were enhanced by target presence. Finally, we
chose the criterion and decision rule that yielded the highest pro-
portion of correct trials, and computed neuronal hit rates and false
alarm rates for each target level, and background-only trials. These hit
rates and false alarm rates were then transformed to percent correct
according to Eq. (11).

Linear-nonlinear model
First, we selected only neurons in the dataset which had reliable
responses to stimulus repeats. To determine response reliability, we
computed a noise ratio (NR) for each neuron, which describes the
amount of variability in the response due to noise versus the amount
of variability in the response driven by the stimulus92,93. Values
approaching 0 indicate increasingly reliable responses to the sti-
mulus, so for the remaining analyses, we included neurons
with NR < 100.

The linear nonlinear model was composed of a spectrotemporal
receptive field (STRF) and a set of rectifying nonlinearities. The STRF β
was fit using normalized reverse correlation

β = XXT
h i�1

Xλ ð12Þ
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where X is the stimulus design matrix Xt defined in Eq. (4) and λ is the
spike count in each25msbinof theDRCstimulus.WhendefiningX , we
used a history window of 300ms (H = 12) and frequency bins corre-
sponding to the frequencies composing the dynamic random chords
(see Stimuli). After fitting the STRF, we fit the nonlinearities of the
neuron. This two-step fitting procedure was repeated using 10 fold
cross-validation, as described below.

For each fold, we selected 90%of the trials for training, leaving the
remaining 10% to be heldout for testing.Within each trial,we excluded
neuronal responses around transitions from silence, or transitions in
contrast, to prevent themodel fromoverfitting strong transients in the
neuronal response. Additionally, we excluded neuronal responses
within a 50mswindow after target presentation, to prevent overfitting
of target responses. Given these exclusion criteria, we calculated the
duration of stimulus sampled in the target period for each trial, and,
for each trial, sampled the same duration of stimulus within the
adaptation period. This procedure ensured that the model was fit to
the same amount of high and low contrast stimulation per trial, to
minimize overfitting to one contrast condition. Then, a stimulus
design matrix X was defined using these stimulus periods, and the
STRF was fit using Eq. (12). We tested whether STRF properties were
affected by stimulus contrast, and found STRFs to be largely stable
when estimated separately for each contrast (Supplementary Infor-
mation and Supplementary Fig. 7). Therefore, we used both periods of
contrast to estimate β.

Using the STRF fit to the training data, we computed the linear
drive xt by convolving the STRF with the lagged spectrogram of the
training stimulus (Eq. (4)). For the GC-LN model we separated the
linear predictions into low and high contrast periods, while for the
static-LN model all matched time points were used. We generated a
histogram of the linear prediction values (50 bins), and for each bin,
computed the mean spike rate of the neuron when the linear predic-
tion fell within those bin edges (Fig. 6d, scatter points). The resulting
set of linear prediction values and average spike rates were fit with an
exponential function:

y=a+bec x�dð Þ ð13Þ

where a determined the minimum firing rate, b was a multiplicative
scaling factor, c determined the gain of the exponent, and d deter-
mined the x-offset, or firing threshold of the neuron. This functionwas
fit to each cell using constrained gradient descent (fmincon in
MATLAB), using a 10 × 10 grid search for parameters b and c. The gain
for each neuron was defined as c. This entire process was repeated for
each cross-validation fold, and the final parameter estimates for the
STRF and nonlinearities were taken as the average over the 10 runs.

To determine the relationship between neuronal gain and beha-
vioral performance, we computed the average neuronal gain across all
noise responsive neurons (NR < 100) in each session for the adaptation
and target periods in the trial.We then compared the session-averaged
gain values to the fitted thresholds and slopes of the psychometric
curve across sessions using themixed-effects linearmodels outlined in
the main text.

Inclusion criteria
Unless otherwise noted, behavioral sessions in which the false alarm
rate exceeded 20% were discarded from analysis. One mouse (ID:
CA122) had consistently high false alarm rates in the high contrast
condition, so we excluded high contrast sessions from this mouse
from all analyses. For Figs. 5 and 6, we removed neurons with low
spike rates (<1 Hz) and noise-like or inverted (i.e. upward inflected)
spike waveforms. To determine waveform quality, we computed the
width of each waveform at half of the minimum value (FWHM) and
its correlation with the average waveform over all neurons. Neurons
whose waveforms had outlier FWHM values (isoutlier in MATLAB),

negative correlations, or were not significantly correlated with the
average (Bonferoni corrected p > 5.85e−6) were removed from fur-
ther analysis. For Fig. 5f–l, sessions with stable population decoding
performance were included (defined as sessions where more than
half of the target types elicited significant population AUC values, as
determined by the bootstrap procedure described previously). For
Fig. 6e–h, only neurons with noise ratios less than 100 were inclu-
ded in all analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study, including sorted spike times from
electrophysiological recordings and behavioral data, have been
deposited on Dryad: https://doi.org/10.5061/dryad.6djh9w120. Every
Figure and Supplementary Figure has associated data with the fol-
lowing exceptions. Figure 1, Supplementary Figure 1, and Supple-
mentary Figure 2 are the results of simulations and thus have no
associated raw data. Simulation parameters can be found in the code.
There are no restrictions on data availability. A Source Data file has
been provided with this manuscript. All data including spike times
from electrophysiological recordings is available on DRYAD: https://
doi.org/10.5061/dryad.6djh9w120. Source data are provided with
this paper.

Code availability
Code for behavioral and neural analysis: https://github.com/geffenlab/
contrast_behavior. Code for the GC-GLM model and simulations:
https://github.com/geffenlab/contrast_glm.
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