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Abstract 
 
The efficient coding hypothesis postulates that neurons shape their response properties to match their dynamic 
range to the statistics of incoming signals. However, whether and how the dynamics of efficient neuronal 
adaptation inform behavior has not been directly shown. Here, we trained mice to detect a target presented in 
background noise shortly after a change in the background contrast. The observed changes in cortical gain and 
detection behavior followed the predictions of a normative model of efficient cortical sound processing; 
specifically, target detection and sensitivity to target volume improved in low contrast backgrounds relative to 
high contrast backgrounds. Additionally, the time course of target detectability adapted asymmetrically 
depending on contrast, decreasing rapidly after a transition to high contrast, and increasing more slowly after a 
transition to low contrast. Auditory cortex was required for detection of targets in background noise and cortical 
neuronal responses exhibited the patterns of target detectability observed during behavior and in the normative 
model. Furthermore, variability in cortical gain predicted behavioral performance beyond the effect of stimulus-
driven gain control. Combined, our results demonstrate that efficient neural codes in auditory cortex directly 
influence perceptual behavior. 
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Introduction 
 

As we perceive the world around us, the statistics of the environment can change dramatically. In order 
to maintain stable percepts, it is crucial for the nervous system to adapt to persistent statistical properties of 
sensory inputs. The efficient coding hypothesis postulates that the nervous system accomplishes this by 
matching the limited dynamic range of individual neurons to the statistics of incoming sensory signals1, allowing 
them to encode information within many types of environments2–4. Neuronal adaptation to environmental 
statistics has been found in many sensory modalities and species5–13. In the auditory system, neurons exhibit 
contrast gain control, adapting the gain of their response function to match the variability in level (contrast) of the 
incoming sounds14–19. Yet it remains unknown whether and how the dynamics of contrast gain control in the 
auditory system inform behavior, as a direct link between neuronal adaptation and behavior has not been 
previously established. The goal of our study was to test the hypothesis that the dynamics of contrast gain 
adaptation in auditory cortex reflect efficient coding of incoming sounds in a manner that shapes behavioral 
performance in an auditory task. 

The efficient coding hypothesis has been formally implemented through normative models of brain 
function3,4,20–23. These models assess whether and how neuronal adaptation shapes sensory information and 
simulate how such adaptation might constrain behavior. Models based on efficient codes explain psychophysical 
biases24 and shape the rate of information transmission when stimulus statistics change dynamically21,23.  
Psychophysical studies suggest that perception is altered by efficient adaptation to stimulus statistics. In humans, 
target volume discriminability is greater in low contrast than in high contrast, an effect consistent with gain control 
observed in primary auditory cortex19. Similar relationships between efficient neural encoding and behavioral 
percepts of sound location have also been found in ferrets10 and in guinea pigs25. However, because neural and 
behavioral responses in these studies were not simultaneously measured, a direct relationship between gain 
control and perceptual performance has yet to be assessed. Additionally, recent theoretical work demonstrated 
that neuronal dynamics reflect efficient coding21,23, but it is unclear whether and how these dynamics shape 
behavioral performance. 

Our first goal for the study was to build a formal framework based on efficient coding to model the 
dynamics of contrast gain control and thereby predict how behavioral performance should adapt after a change 
in contrast. We then derived a novel procedure for estimating moment-to-moment changes in neural gain based 
on generalized linear models (GLM) and found the dynamics of gain control in auditory cortex matched the 
predictions of the efficient coding model. Next, to directly test the role of efficient coding in auditory behavior, we 
trained mice to detect targets in different contrast backgrounds. Contrast-induced changes in behavioral target 
detection threshold, sensitivity, and background adaptation dynamics followed the normative model predictions. 
Furthermore, we found that auditory cortex was necessary for target detection in the presence of a background. 
Building on this finding, we found that the dynamics of cortical encoding of targets were similar to the model 
predictions and to observed behavioral adaptation, and that population activity in auditory cortex predicted 
individual variability in task performance. Finally, we estimated cortical gain during the task, finding that variability 
in neural gain predicted variability in task performance. Combined, our results identify a novel relationship 
between efficient neuronal coding and acoustic behavior, and they provide a normative framework that can be 
used to predict the dynamics of behavioral performance in response to changing sensory environments. 
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Results 
 
A novel target-in-background detection task and normative model for task predictions. 

To assess how perceptual performance is impacted by stimulus contrast, we devised a GO/NO-GO task 
in which mice were trained to detect targets embedded in low and high contrast backgrounds. During each trial, 
the mouse was presented with dynamic random chords (DRCs) of one contrast, which switched after 3 s to the 
other contrast. At variable delays after the contrast switch, broad-band target chords were superimposed on the 
background chords, and mice were trained to lick for a water reward upon hearing the target (henceforth, we 
refer to high-to-low contrast trials as “low contrast” and low-to-high contrast trials as “high contrast”, referring to 
the contrast where mice detected targets). Target trials were interleaved with background-only trials, during 
which the mouse was trained to withhold licking, but would receive a 7s timeout for licking after the contrast 
switch (Figure 1a,b). To assess behavioral sensitivity to targets, we parametrically varied target volume in each 
contrast and to assess behavioral adaptation, we parametrically varied target timing (Figure 1c). This stimulus 
design allowed us to quantitatively test whether and how the dynamics of adaptation to background contrast 
affect behavioral performance. 
 To predict the optimal time course of contrast gain control and its impact on target detection behavior, 
we developed a normative model of task performance constrained by efficient neural coding. In this model, we 
simulated a neuron designed to encode stimuli with minimal error. To efficiently exploit its finite dynamic range, 
the model neuron estimated the contrast of the recent stimuli, and adjusted the gain of its nonlinearity to minimize 
the error in estimated contrast (Figure 1d, panels 1-3; Online Methods)21,23. Adding targets at different levels and 
times relative to contrast transitions allowed us to probe the sensitivity of the model neuron to targets of varying 
strength over the time course of adaption (Extended Data Figure 1c,d). When varying target strength and 
measuring model psychometric performance (Online Methods), we found decreased detection thresholds and 
steeper slopes in low contrast relative to high contrast (Figure 1e). When varying target timing, two factors 
affected target discriminability: 1) A change in the stimulus distribution after the contrast switch; 2) The effect of 
gain adaptation on responses to the background (Figure 1f,g; Extended Data Figure 1c,d). These dynamics were 
well characterized by a single effective timescale, which we quantified by fitting an exponential function to each 
transition. The normative model presented three primary predictions: When adapted to low contrast, 1) target 
detection thresholds will be lower and 2) model psychometric functions will have steeper slopes; 3) 
Discriminability over time will be asymmetric: rapidly decreasing after a switch to high contrast, and slowly 
increasing after a switch to low contrast (Figure 1h). 
 
Estimated cortical gain dynamics follow normative model predictions. 
 Previous work on contrast gain control used static models of contrast gain control, measuring steady-
state gain after the neuron fully adapted to the new stimulus14,16,17,19, but see15,26. To measure the dynamics of 
gain control, we developed a Poisson GLM to estimate the gain of neurons in auditory cortex over time following 
a contrast transition. This model was fit to data recorded from the auditory cortex of a naive mouse (n = 97 
neurons) presented with 3 s alternations of low and high contrast DRCs (Figure 2a,b). 
 The inference model is a Poisson GLM that decomposes the relationship between spiking activity (!!) 
and the presented sounds into a stimulus component ("!), contrast component (σ$/σ!), and an interaction 
between the stimulus and the contrast ("! ∗ σ$/σ!, where σ$ is an arbitrary constant, defined as the contrast at 
which the gain is 1: see Online Methods). We calculated a gain control index ('!) from the fitted model 
parameters (Figure 2b) which quantified whether gain control estimated from the model was optimal given the 
background contrast levels (see Supplementary Information). For comparison, we also fit previously used linear-
nonlinear (LN) models to each neuron14,16,17,19, one with a static output nonlinearity (static-LN), and one with a 
contrast-dependent, or gain-controlled (GC), output nonlinearity (GC-LN, Figure 2c; representative neuron: 
Figure 2d-g). In this neuron, the fits of the GC-LN model and GLM with gain control (GC-GLM) demonstrated 
contrast gain control, characterized by high gain in low contrast and low gain in high contrast (Figure 2f and g, 
respectively), suggesting that both models capture similar gain control estimates.  
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Figure 1.  

a, Experimental setup. b, GO/NO-GO task design. Left: example NO-GO trials. From top to bottom: spectrogram of an 
example low-to-high contrast trial (color bar indicates volume in dB SPL); waveform for sample spectrogram; example 
spectrogram for a high-to-low contrast trial; waveform for example spectrogram; response window to determine false alarms; 
schematic lick responses in the response window; timeout of 7 seconds delivered after the first lick. Vertical red dashed line 
indicates the contrast switch after 3 seconds. Black scale bar indicates 1s. Right: example GO trials. From top to bottom: 
same as in left panel, except licks in the response window trigger a 5μL reward. In all figures, low to high contrast trials are 
indicated in red, and high to low contrast trials are indicated in blue. c, Target waveforms. Top: Overlaid trials where target 
volume differed. Volume is indicated by the amplitude and color bar. Bottom: trials where target timing differed. The red 
vertical dashed line indicates the contrast switch. d, Normative model of the task. Left inset: volume distributions for 
backgrounds (light lines) and targets (dark lines) in low and high contrast. (1) Spike generation process: a model neuron 
encodes stimuli sampled from a 1-dimensional sensory stimulus stream consisting of a background that transitions between 
low and high contrast (light lines); target stimuli (solid dots) were used to assess sensitivity. The stimulus response of the 
neuron is transformed by a sigmoidal function whose output is used to generate stochastic spikes. (2) The observed spike 
counts are integrated and decoded over a brief time window to estimate the variance of the stimulus. (3) The variance 
estimate is used to adjust the gain of the model neuron to minimize the expected error in the estimate of stimulus variance 
at each time step. Bottom insets: Sample probability distributions of observing ! spikes in response to the background (light 
lines) or targets (dark lines) 7 time steps after a switch to high (red) or low contrast (blue). e, Model psychometric functions 
at steady state (25 time steps after transition) as a function of contrast and mean target volume. Light dots indicate 
discriminability of targets from background whereas the solid lines indicate logistic fits to the data. Dashed lines indicate 
detection thresholds. f, Model discriminability as a function of time and contrast. Dashed vertical line indicates the time 
where the background contrast changes. Light dots denote model discriminability at each time step. Solid lines are 
exponential fits to the data. Each time course is the discriminability of targets at approximate threshold volume for that 
contrast (1.5 target mean and 2.25 target mean for low and high contrast respectively).  g, The average change in gain of 
the model after each contrast transition. h, Model predictions for the effects of contrast on psychometric thresholds, slopes, 
and adaptation time constants, as estimated by logistic and exponential fits in e and f. 
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 Qualitatively, the GC-GLM outperformed standard LN models, primarily by capturing the adaptation 
dynamics after the transition (Figure 2d, middle panel), allowing us to analyze the gain control index as a function 
of time, '! (Figure 2d, bottom panel; Figure 2g). To test whether the GC-GLM could better account for the data 
than standard models, we compared cross-validated correlations of the model predictions with the trial-averaged 
PSTH for each neuron, finding a significant effect of model type on the correlations (n = 97 neurons; Kruskall-
Wallis test: H(2) = 93.61, p = 6.70e-21). Post-hoc Wilcoxon Sign-Rank tests showed that the GC-GLM correlation 
was significantly higher (Median (Mdn) = 0.75, Inter-Quartile Range (IQR) = 0.24) than the GC-LN model (Mdn 
= 0.54, IQR = 0.49, p = 4.41e-6) and the static-LN model (Mdn = 0.25, IQR = 0.73, p = 9.56e-10). Consistent 
with previous studies, we also found that the GC-LN model outperformed the static-LN model (p = 3.50e-6, 
Figure 2h).  

We next quantified whether the GC-GLM detected significant gain control in the population. Here, we 
defined steady-state gain control by calculating the change in '! between high ('") and low contrast ('#) after 
the gain has stabilized (1 s after the contrast switch). Based on our definition of '!, '" −'# 	= 	−1 if gain control 
is optimal (see Supplementary Information). Across all neurons, we found significant gain control (Mdn: -0.10, 
IQR: 0.35, Wilcoxon sign-rank test: rank = 233, Z = -2.90, p = 0.004; Figure 2i). To further validate the GLM 
estimates of gain, we compared the GC-GLM gain control indices at steady-state to those of the GC-LN model 
and found a significant relationship (linear regression: F(1,95) = 12.20, p = 7.33e-4, R2 = 0.11; Figure 2j). 
Together, these results demonstrate that the GC-GLM model better accounts for the neural data by incorporating 
the dynamics of gain control and conclude that this method captures a similar estimate of steady-state gain 
control when compared to standard models. 
 Next, we analyzed the dynamics of gain control by fitting '! after each contrast switch with an exponential 
function (Figure 2g). In neurons with gain control ('! < 0 at steady state), the average time course of '! was 
asymmetric across contrast transition types, rapidly decreasing after a switch to high contrast, and slowly 
increasing after a switch to low contrast (n = 45 neurons; Figure 2k).  Within this same population, we quantified 
the timescale of adaptation to each contrast using the time constant (τ) of each exponential fit, finding 
significantly longer time constants in low contrast (Mdn = 0.29, IQR = .39) relative to high contrast (Mdn = 0.048, 
IQR = 0.094; Wilcoxon sign-rank test: rank = 918, Z  = 4.52, p = 6.16e-6; Figure 2l). This asymmetry in gain 
adaptation agreed with the predictions of the normative model (Figure 1g) and with previously described behavior 
of optimal variance estimators20.  
 
Mouse behavioral detection is modulated by background contrast. 

We next tested whether the asymmetry in gain control observed in cortex was reflected in behavioral 
sensitivity to targets in background noise. Mice initially trained in a simple version of the GO/NO-GO task where 
they were required to lick in response to a target and withhold licks on trials without a target (Figure 1b, 3a). Mice 
learned this task reliably, typically reaching criterion performance of 80% correct within 2-3 weeks in either 
contrast (Figure 3b). False alarm rates were significantly larger in high contrast than in low contrast (Extended 
Data Figure 3a), suggesting that detection is more difficult in high contrast, which we discuss next. 

By varying the volume of presented targets, we collected psychometric curves for each mouse in each 
contrast (example mouse performance: Figure 3c; group averages: Figure 3d). Across all mice (n = 25), we 
found that targets were easier to detect in low contrast, observing significantly lower detection thresholds in low 
contrast (Mean (M) = 7.30, standard deviation (SD) = 1.67) compared to high contrast (M = 13.20, SD = 2.54; 
paired t-test: t(23) = -9.11, p = 4.34e-9, Figure 3e). To quantify the influence of contrast on psychometric slope, 
we tested a subset of mice with target volumes matched across the contrast conditions. In this cohort (n = 7; 
Figure 3f), we found significantly lower target thresholds in low contrast (M = 6.80, SD = 2.73) compared to high 
contrast (M = 14.96, SD = 3.51; paired t-test: t(3) = -3.59, p = 0.036; Figure 3g) and significantly steeper slopes 
in low contrast (M = 0.051, SD = 0.0068) compared to high contrast (M = 0.042, SD = 0.0064; paired t-test: t(3) 
= 3.42, p = 0.042; Figure 3h). Interestingly, there was no significant change in psychometric slope when 
combining sessions with different target ranges in each contrast (n = 25; Extended Data Figure 3b). Splitting the 
data by target range revealed that targets drawn from a narrow range resulted in steeper psychometric slopes 
than targets drawn from a wide range (Extended Data Figure 3c-f), regardless of the background contrast. 
Combined, these results demonstrate that background contrast has a substantial impact on detection threshold, 
and that mice are more sensitive to changes in the volume of targets presented in low contrast. 
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Figure 2. 

a, Schematic for acute recordings from auditory cortex. b, Schematic of Poisson generalized linear model (GLM) design. 
From left to right: The variables considered by the model are the stimulus spectrogram, the stimulus contrast, and observed 
spikes. The GLM with gain control (GC-GLM) is fit in two steps: 1) A spectrotemporal receptive field (STRF) is estimated. 
2) Weights of stimulus drive ("!), the multiplicative interaction between the contrast and the stimulus drive ("! ∗ σ%/σ!), and 
the contrast drive (σ%/σ!) are fit using Poisson regression. The history of the contrast predictors were smoothed with a B-
spline basis set.  c, Schematic of linear-nonlinear models. As in b, we first fit a STRF which is then passed through either a 
static exponential nonlinearity (static-LN) or independent nonlinearities fit separately to low and high contrast periods (GC-
LN). d, Neuronal responses and model fits for a representative neuron. Top: a spike raster for the example neuron. Each 
period of contrast is indicated by the blue (low contrast) and red (high contrast) bars. Middle: PSTH of the example cell is 
plotted in gray. Predictions from the static-LN model are plotted in gray, GC-LN model in green, and GC-GLM model in 
orange. All traces were smoothed with a 10ms wide Gaussian filter for visualization.  Bottom: the gain control index, '!  
(orange trace). The gain control index of a neuron with no gain control ('! = 1) is plotted as a grey dashed line, and the 
gain control index of a neuron with optimal gain control ('" = 0.5,'# = 1.5) is plotted as a black dashed line (see Online 
Methods). e, The STRF estimated from this neuron. f, The nonlinearities fitted to low (blue) and high (red) contrast in the 
GC-LN model for the example neuron. Points indicate the mean observed firing rate (ordinate), binned according to 
observed filter prediction values (abscissa). Solid lines are exponential function fits. g, Gain control index, '! , for the 
example neuron after each contrast switch (dashed red and blue lines). The solid red and blue lines are fits of an exponential 
function. Dashed gray and black lines indicate neutral and optimal gain control values as in d. h, Cross-validated Pearson’s 
correlations between the trial-averaged firing rate trace and the model predictions. Gray, green, and orange dots indicate 
the correlations for each neuron (n=95) for the static-LN, GC-LN, and GC-GLM models, respectively. Open circles indicate 
the median correlation, and the error bars indicate 2.5-97.5 percentiles. Results of Wilcoxon Sign-Rank tests are indicated 
with asterisks. i, Distribution of gain control estimated by the GLM for the recorded population (defined as the difference in 
the gain control index between high and low contrast, measured after the gain has stabilized (ie. after 1s): '" −'#). Dashed 
vertical line indicates no gain control, while the solid orange line indicates the median of the distribution. Asterisks indicate 
the results of a Wilcoxon Sign-Rank test. j, Correspondence between gain control estimates from the GC-GLM model 
(abscissa) and the previously reported GC-LN model (ordinate). Black dots indicate the data for each neuron, while linear 
model fit and error are indicated by the gray line. Asterisks indicate significance of the linear fit to the data. k, Average time 
course of the gain estimate '!  for neurons with gain control (ie. gain control is less than 0, n = 45). Light red and blue lines 
indicate the average value of '! ±SEM over neurons for transitions to high and low contrast, respectively. Solid red and 
blue lines are exponential fits to the averages after the transition, which is marked by the dashed black line. l, Distributions 
of adaptation time constants of '!  after transitions to low contrast, in blue, and high contrast, in red. Each dot and line 
indicates a neuron. Asterisks indicate the results of a Wilcoxon Sign-Rank test. In all plots: ns, not significant; †p<0.1; 
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 
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To assess behavioral adaptation to the background contrast, we presented targets at threshold volume 
at variable delays following the contrast transition. We observed behavioral time courses consistent with the 
normative model and with gain measured in auditory cortex: after a switch to high contrast detection rates 
decreased quickly over time, but after a switch to low contrast detection rates increased slowly over time (Figure 
3i). In high contrast, the first significant drop in performance occurred between the first two time points, while in 
low contrast the first significant increase in performance occurred between the first and third time points (Figure 
3i, Extended Data Table 1). Indeed, behavioral adaptation was significantly faster in high contrast (exponential 
fit to behavioral performance after contrast transition, Mdn = 0.023, IQR = 0.082) compared to low contrast (Mdn 
= 0.13, IQR = 0.13; Wilcoxon Rank-Sum test (n = 21): rank  = 547, Z = 2.75, p = 0.0060; Figure 3j). Taken 
together, these behavioral results confirm the three predictions from the normative model (Figure 1h): 1) 
Detection thresholds are lower in low contrast; 2) Psychometric slopes are higher in low contrast; 3) Performance 
decreases rapidly in high contrast and increases gradually in low contrast. 
 
Auditory cortex is necessary for detection in background noise. 
 Whereas gain control is present in many areas along the auditory pathway, it is strongest in auditory 
cortex16,19. As such, we hypothesized that auditory cortex supports the detection of sounds in the presence of 
background noise. To test whether auditory cortex is required for task performance, we inactivated auditory 
cortex using the GABA-A receptor agonist muscimol. We validated that muscimol disrupts cortical coding of 
target sounds by applying muscimol topically to the cortical surface during passive playback of the behavioral 
stimuli, finding near complete suppression of target responses (Extended Data Figure 4a-f, Supplementary 
Information).  
 To test whether inactivation of auditory cortex affects behavioral performance, we repeated the same 
experiments in behaving mice, administering muscimol or saline bilaterally through chronically implanted 
cannulae (n = 44 sessions from 4 mice; Figure 4a). We found a profound decrease in the response rates to 
targets and background in both contrasts (Figure 4b). We quantified these effects on the psychometric curve 
using a three-way ANOVA with cortical intervention (muscimol or saline), contrast, and target volume as 
factors. We found significant main effects of cortical intervention (F(1,307) =  278.63, p = 3.83e-44), contrast 
(F(1,307) = 4.39, p = 0.037) and volume (F(6,307) = 40.90, p = 7.54e-36). Post-hoc tests showed that 
muscimol application significantly decreased hit rates in both contrasts by 31.45% (95% CI: [27.76, 35.14], p = 
1.060e-10), whereas an increase in background contrast significantly decreased hit rates in both intervention 
conditions by 3.95% (95% CI: [2.57, 7.64], p = 0.036). Furthermore, we observed significant interactions 
between target volume and cortical intervention (F(6,307) = 14.11, p = 4.47e-14), and between target volume 
and contrast (F(6,307) = 2.97, p = 7.87e-3), but we did not observe a significant interaction between contrast 
and cortical intervention, suggesting that muscimol has the same effect in low and high contrast. To quantify 
the effects of muscimol on psychometric performance, we extracted response rates to the maximum target 
volume, false alarm rates, thresholds, and slopes of psychometric functions fit to each session, and found that 
muscimol significantly reduced every measure of psychometric performance, with the exception of behavioral 
threshold (Figure 4c, Extended Data Table 1). From these results, we can conclude that auditory cortex is 
necessary for detecting targets in background, regardless of background contrast. 
 A potential alternative effect of muscimol is a general loss of function that is not specific to hearing target 
sounds. To control for this, we devised an alternative to the detection in background task where mice detected 
targets in silence (Figure 4d). To ensure equivalency between the two tasks, we took the highest-volume target 
trials in the target-in-background task (25dB SNR in high contrast) and removed the background noise during 
the target detection period (Figure 4e, bottom). Thus, mice were presented with the exact same targets as in the 
previous task, but without the background DRCs, allowing us to test whether auditory cortex is specifically 
required for detection in the presence of a background (Online Methods). 
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Figure 3.  

a, Schematic of GO/NO-GO paradigm. b, Behavioral performance the initial training contrast (n=12 mice were first trained 
in low contrast, n=13 mice were first trained in high contrast). Dots indicate sessions, solid lines are a 7 day moving average. 
Dashed horizontal line indicates chance performance (percent correct = 0.5). c, Psychometric functions in low and high 
contrast for one mouse (mouse ID indicated in the upper left). Each dot indicates percent correct for a single volume in a 
single session, while the solid lines indicate average psychometric fits. Colors as in b. d, Psychometric functions averaged 
for n=25 mice in each contrast. Dots indicate performance at each target SNR ±SEM over mice, while the solid lines are 
logistic function fits with thresholds plotted as dashed lines. e, Psychometric thresholds per contrast. Each dot and line 
represents a mouse. Bars indicate the average threshold ±SEM over mice. f, Psychometric functions for n=7 mice tested 
using the same target volumes in each contrast. Dots indicate average performance ±SEM over mice. Lines indicate 
psychometric fits, with the vertical dashed lines indicating average thresholds. Light lines indicate the psychometric curves 
of individual mice. g, Psychometric thresholds per contrast. Each dot represents a mouse, lines indicate where mice 
participated in both low and high contrast sessions. Bars indicate the average threshold over mice, while error bars in black 
indicate threshold ±SEM over mice. h, Psychometric slopes per contrast. Presentation as in g. i, Behavioral performance 
as a function of contrast and target time relative to the switch in contrast (vertical dashed line) for n=21 mice. Dots indicate 
average performance ±SEM over mice. Solid curves are exponential function fits. Horizontal lines at the top of the plot 
indicate significant changes in performance between the first target presentation time and subsequent target presentation 
times, as assessed by Wilcoxon Sign-Rank tests with false discovery rate correction for multiple comparisons (see Extended 
Data Table 1). j, Average time constant of exponential fits in low and high contrast. Presentation as in h. In all plots, asterisks 
indicate the significance of Wilcoxon Sign-Rank tests: ns, not significant; †p<0.1; *p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001. 
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To assess psychometric performance in this new task, we modulated detection difficulty by attenuating 
the volume of each target. As observed previously, inactivation of auditory cortex impaired detection in high 
contrast (Figure 4e, top). However, cortical inactivation had little effect on psychometric performance in silence 
(Figure 4e, bottom). We quantified these effects on psychometric performance using a three-way ANOVA with 
cortical intervention (muscimol or saline), task (detection in background or silence), and target volume as factors 
(n = 26 sessions from 2 mice). We found significant main effects of intervention (F(1,181) = 62.83, p = 3.62e-
13), task (F(1,181) = 6.82, p = 9.86e-3), and volume (F(6,181) = 46.16, p = 1.69e-32). Post-hoc tests showed 
that muscimol significantly reduced hit rates by 20.2% (95% CI: [15.19, 25.17], p = 1.060e-10). Hit rates for 
targets presented in silence were significantly elevated by 6.65% relative to targets presented in background 
(95% CI: [1.65, 11.64], p = 0.0090). Furthermore, we found significant interactions between cortical intervention 
and task type (F(1,181) = 6.36, p = 0.013), intervention and volume (F(6,181) = 3.47, p = 2.98e-3), and volume 
and task type (F(6,181) = 8.47, p = 5.43e-8). As before, we parameterized psychometric performance by fitting 
each session with a psychometric curve, and we extracted the response rates to the maximum target volume, 
false alarm rates, response rates at threshold volume, and slopes of psychometric functions. During the target-
in-background task, we found significant effects of muscimol on the response rates at maximum volume and 
threshold, a moderate effect on psychometric slope, and no effect on false alarm rate. However, muscimol 
application had no significant effect on any of these measures in the target-in-silence task (Figure 4f, Extended 
Data Table 1). Taken together, these results show that while both cortical inactivation and the presence or 
absence of background noise affected behavioral performance, these effects interacted: muscimol had a larger 
effect on performance when background noise was present. 

Combined, our findings demonstrate that the auditory cortex is specifically required for detection in the 
presence of background noise, but not in silence. Our next goal was to test whether neuronal activity in AC is 
predictive of behavioral performance. 
 
Cortical codes predict individual behavioral performance. 
 To better understand how representations in auditory cortex could give rise to behavior, we chronically 
recorded from populations of neurons in auditory cortex while mice performed the psychometric task (Figure 
5a; n = 12 mice; n = 11 mice participated in low contrast sessions, n = 8 in high contrast sessions). 

To quantify the representations of targets and background in the neural population (example responses 
in Figure 5b,c), we adapted a population vector approach27 to generate a discriminability metric using population 
activity (Online Methods). This method allowed us to project trial distributions in /-dimensional neural space 
along a single dimension which separated target and background trials (Figure 5d, left panel). We then estimated 
the criterion projection value that best predicted whether each trial contained a target or just background28 (Figure 
5d, right). 

This population decoding method allowed us to estimate neurometric functions to directly compare to 
psychometric functions for each mouse (Figure 5e). On average, neurometric and psychometric functions were 
qualitatively similar (Figure 5f). To test the relationship between contrast and threshold measure we computed 
average neurometric and psychometric thresholds for each mouse and performed a two-way ANOVA with 
threshold measure (neurometric or psychometric) and contrast as factors. We found a main effect of contrast 
(F(1)  = 37.88, p = 5.43e-7), no main effect of threshold measure (F(1) = 0.060, p = 0.81) and no interaction 
between measure and contrast (F(1) = 0.040, p = 0.84), which suggests that psychometric and neurometric 
thresholds were similarly affected by background contrast. As expected, post-hoc t-tests found no difference 
between neurometric and psychometric thresholds (0.19, 95% CI: [-1.38, 1.76], p = 0.81), and that low contrast 
significantly decreased thresholds relative to high contrast (-4.77, 95% CI: [-6.34, -3.19], p = 5.43e-7). 

To quantify the relationship between neurometric and psychometric thresholds, while controlling for the 
effect of contrast, we fit a mixed-effects model using contrast and neurometric threshold as fixed effects, mouse 
identity as a random effect and psychometric threshold as the dependent variable (Extended Data Table 1). We 
tested the significance of each predictor by comparing the full model fit to null models excluding neurometric 
thresholds or contrast. We found that both neurometric threshold (Likelihood Ratio Test: χ$(1) = 5.89, p = 0.015) 
and contrast (Likelihood Ratio Test: χ$(1) = 4.70, p = 0.030) significantly improved psychometric threshold 
predictions (Figure 5g). Taken together, these results demonstrate that population thresholds in auditory cortex 
are predictive of behavioral thresholds in individual mice, and both psychometric and neurometric thresholds are 
modulated by contrast as predicted by a normative account of gain control. 
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Figure 4. 

a, Setup schematic for muscimol application in behaving mice. Bottom: legend indicating colors used for each background 
condition. b, Behavioral psychometric functions after muscimol or saline application (n = 43 sessions across 4 mice). Top: 
Performance in high contrast (red). Bottom: Performance in low contrast (blue). Dark solid lines and filled circles indicate 
average performance after saline injection. Dark dashed lines and open circles indicate average performance after muscimol 
injection. Light solid and dashed lines are psychometric curves from individual sessions. Error bars indicate ±SEM across 
sessions. c, Behavioral performance metrics. Open circles indicate performance in individual sessions. Colored bars 
indicate average performance across sessions. Opaque bars with solid outlines are averages after saline application, while 
transparent bars with dashed outlines are averages after muscimol application. d, Top: Example stimulus spectrogram for 
the target-in-background detection task with the corresponding waveform below. Color bar indicates sound level (silence is 
black). Bottom: Spectrogram and waveform for the target-in-silence task. e, Top: psychometric performance with high 
contrast background (n = 10 sessions across 2 mice), formatting as in top panel of b. Bottom: psychometric performance  
(n = 16 sessions from 2 mice) in the target-in-silence task, with target attenuation relative to the highest volume target from 
the target-in-background task on the abscissa and probability of responding on the ordinate. Black filled circles and dark 
solid lines indicate average performance after saline injection and psychometric fits to the average. Open circles and dark 
dashed lines indicate average performance after muscimol injection and psychometric fits to the average. Light gray solid 
and dashed lines are psychometric curves from individual sessions. Error bars indicate ±SEM  across sessions. f, Behavioral 
performance metrics as a function of task type and pharmacological intervention. As in c, opaque bars are averages of 
saline sessions, transparent bars are averages of muscimol sessions. Red bars indicate performance in the detection-in-
background task. Gray bars indicate performance in the detection-in-silence task. In all plots: nsp>0.1; †p<0.1, *p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001. 
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We applied the same statistical analysis to neurometric and psychometric slopes. When analyzing only 
mice with matched target ranges in low and high contrast, we found a significant main effect of contrast (two-
way ANOVA: F(1) = 5.98, p = 0.028) and slope measure (F(1) = 10.62, p = 0.0057), but no significant interaction 
(F(1) = 2.095, p = 0.17). Post-hoc t-tests found significantly steeper slopes in low contrast compared to high 
contrast (0.0071, 95% CI: [0.00087, 0.013], p = 0.028) and significantly shallower neurometric slopes compared 
to psychometric slopes (-0.0094, 95% CI: [-0.016, -0.0032], p = 0.0057; Extended Data Figure 5a). When 
including all mice we found significant main effects of slope measure (two-way ANOVA, F(1) = 5.88, p = 0.021) 
and contrast (F(1) = 8.31, p = 0.0068), but no significant interaction between the two (F(1) = 0.18, p = 0.67). 
Neurometric slopes were significantly shallower than psychometric slopes (-0.015, 95% CI: [-0.027, -0.0024] 
PC/dB, p = 0.021) and low contrast slopes were significantly shallower than high contrast slopes (-0.018, 95% 
CI: [-0.030, -0.0052] PC/dB, p = 0.0068; Figure 5h). The latter effect may be due to the mixture of target ranges 
used in the full cohort of mice, which we found to have an impact on psychometric slopes (see Extended Data 
Figure 3b-f). To quantify the relationship between neurometric and psychometric slopes, we applied the same 
mixed-effects analysis used previously (Extended Data Table 1). For all mice, we found that neurometric slopes 
(Likelihood Ratio Test: χ$(1) = 9.78, p = 0.0018), but not contrast (Likelihood Ratio Test: χ$(1) = 8.55, p = 0.078) 
significantly improved psychometric slope predictions (Figure 5h). Overall, these results were consistent with our 
previous behavioral findings (Figure 3h), demonstrating that, when target volumes are matched, increased 
contrast reduced neurometric and psychometric slopes and that neurometric slope is predictive of psychometric 
slope on a mouse-to-mouse basis. 

Combined, these results demonstrate that parameters of neurometric and psychometric functions are 
affected by contrast as predicted by a normative model of gain control. We also find that individual variation in 
psychometric performance is predicted by population activity in auditory cortex, independently of the effect of 
contrast. 
 
Dynamics of target detection during adaptation. 
 We next measured how cortical discriminability evolved as a function of time and contrast in sessions 
where mice were presented with targets at threshold volume at different offsets relative to the contrast switch. In 
line with our behavioral results (Figure 3i), we found that in high contrast the first significant drop in cortical 
discriminability occurred between the first two target times, while in low contrast the first significant drop occurred 
between the first and third target times (n = 43 recording sessions; Extended Data Table 1; Figure 5i). To quantify 
the speed of neural adaptation, we fit the average neural discrimination time course for each mouse with an 
exponential function (n = 8 mice). Consistent with the normative model (Figure 1f-h), gain control dynamics 
estimated from cortical activity (Figure 2k,l) and behavior (Figure 3i,j), we found asymmetric adaptation in the 
neural responses, with larger adaptation time constants in low contrast (Mdn = 0.14, IQR = 0.21) relative to high 
contrast (Mdn = 0.033, IQR = 0.16; Wilcoxon sign-rank test (n = 8): rank  = 28, p = 0.016; Figure 5j). 
 
Cortical gain predicts behavioral performance. 
 Our results so far provide strong evidence that gain control in the auditory system shapes behavioral 
performance. To assess the role of cortical gain in behavior, we leveraged the design of the background sounds 
to estimate spectrotemporal receptive fields (STRFs) and nonlinearities of neurons recorded during task 
performance. For each neuron, we fit a model with a static nonlinearity (static-LN) or a model with gain control 
(GC-LN; Figure 6a-d). We then pooled the neurons recorded across sessions, and included only neurons with 
strong stimulus responses in both contrasts (Online Methods). First, we compared the cross-validated 
performance of the static-LN model versus the GC-LN model, finding higher correlations using the GC-LN model 
(Mdn = 0.82, IQR = 0.17) relative to the static-LN model (Mdn = 0.67, IQR = 0.12; Wilcoxon sign-rank test (n = 
2,792 neurons): rank = 3.85e5, Z = -36.74, p = 1.88e-295; Extended Data Figure 5h). We also found significantly 
higher gain in low contrast (Mdn = 0.10, IQR = 0.13) than in high contrast (Mdn = 0.041, IQR = 0.023; Wilcoxon 
sign-rank test: rank = 3.57e6, Z = 37.92, p = 1.070e-314; Figure 6e, inset). These results demonstrate that LN 
models can more accurately predict cortical activity when incorporating contrast gain control, and confirm 
previous reports of robust gain control in mouse auditory cortex17–19. 
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Figure 5. 

a, Experimental setup for chronic ACtx recordings from behaving mice. b, Example spiking responses to targets and 
background in low contrast during behavior. Top: Spike raster ordered by target volume. Bottom: Trial averaged PSTH for 
each condition (smoothed with a 2 ms wide Gaussian kernel). Inset: Area under the ROC curve (AUC) when discriminating 
background from target responses. The dashed horizontal line indicates chance performance (0.5). Error bars are 
bootstrapped 95% confidence intervals. c, Neurograms of populations of simultaneously recorded neurons during 
representative low and high contrast sessions. Arrow indicates the neuron in panel b. d, Discriminating targets from 
background using population responses. Left: schematic of coding direction analysis. In /-dimensional neural space, 
background trials are represented by a gray point-cloud, while target trials are represented by a blue point-cloud. The coding 
direction (CD) is the vector defining the average difference between target and noise. Right: trial distributions of projections 
along the CD for one session (low contrast session in c). Projection values for 20 dB SNR targets are plotted in blue, projection 
values for noise trials are plotted in gray. The red line is the criterion optimized using all trials. e, Example neurometric and 
psychometric curves. Left: Low contrast curves. Light blue circles and solid lines indicate psychometric performance and 
logistic fit. Dark blue circles and solid lines indicate neurometric performance from the session plotted in the left panel of c. 
The horizontal dashed line indicates chance performance (percent correct = 0.5). The arrow indicates the neural performance 
computed from the distributions in d. Right: High contrast curves for the session plotted in the right panel of c. f, Average 
neurometric and psychometric functions for each contrast (n = 19 mice). Formatting as in e. Errorbars are ±SEM over mice. 
g, Relationship between behavioral and neural thresholds. Circles represent the average behavioral and neural threshold for 
each mouse in each contrast. Gray line is the linear best fit, solid black line is unity. Gray asterisk indicates significant 
relationship between neurometric and psychometric threshold, while black asterisk indicates significant effect of contrast on 
threshold.  h, Relationship between behavioral and neural slopes. Appearance as in g. i, Decoder performance after each 
contrast transition, as a function of target presentation time. Dashed vertical line indicates the contrast switch. Solid lines and 
circles indicate the percent correct performance of a target decoder after a switch to low contrast (blue) or high contrast (red) 
±SEM over sessions. Horizontal lines indicate significant changes in performance between the first target presentation time 
and subsequent target presentation times, as assessed by Wilcoxon Sign-rank tests with FDR correction. j, Adaptation time 
constants of exponentials fitted to the average neural decoder performance in each contrast for each mouse. Circles 
connected with a line indicate data per mouse. Asterisk is the significance of a Wilsoxon Sign-Rank test. In all plots: nsp>0.1; 
†p<0.1, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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 Based on our previous results, we expected that the amount of gain control in auditory cortex would 
predict target detectability. When fitting the GC-LN model, we separately estimated neural gain during the 
adaptation period of the trial and the target period of the trial (defined as the time periods before and after the 
contrast switch, respectively; Figure 6b). To quantify the effects of contrast and trial period on gain, we performed 
a two-way ANOVA, with gain as the dependent variable, and contrast, trial period, and their interaction as factors 
(n = 2,262 neurons, after excluding outliers, see Online Methods). As expected, we found a significant main 
effect of contrast (F(1,4523) = 431.03, p = 1.60e-91). Furthermore, there was a significant main effect of trial 
period (F(1,4523) = 35.79, p = 2.36e-9) and a significant interaction between contrast and trial period (F(1,4523) 
= 77.91, p = 1.51e-18). Post-hoc tests revealed that, in low contrast, gain during the target period significantly 
increased (0.032, 95% CI: [0.024, 0.040], p = 3.77e-9), but did not significantly change in high contrast (0.0062, 
95% CI: [-0.017, 0.014], p = 0.18; Figure 6e). These findings indicate that neural gain is not only sensitive to 
stimulus contrast, but also increases during the target period of the trial, specifically in low contrast. 

To visualize the gross relationship between gain and psychometric performance, we first averaged the 
gain of stimulus-responsive neurons during the target period of the trial in each session (n = 168 sessions across 
13 mice). We then selected only low contrast sessions and split the data by the median gain in the target period, 
computing the average psychometric curves for sessions in the bottom versus the top 50th percentile (Figure 6f, 
inset). We observed that sessions with high gain had steeper slopes and lower thresholds than sessions with 
low gain (Figure 6f). To quantify the relationship between gain and task performance, we fit a mixed-effects 
model using contrast and gain during the target period as fixed effects, mouse identity as a random effect and 
either psychometric slopes or thresholds as the dependent variable. This approach allowed us to separate the 
neuronal and behavioral impact of contrast gain control from effect of session-to-session fluctuations in gain. We 
tested whether gain and contrast were significant predictors of behavioral performance by comparing the full 
model to null models excluding either gain or contrast. We found that the model including gain was a better 
predictor of behavioral threshold than was the null model (Likelihood Ratio Test: χ$(1) = 5.82, p = 0.016), 
indicating that thresholds decreased by about 3.046 dB SNR ±1.24 (standard error) for every 10% increase in 
gain. Using a similar procedure, we found that contrast was also a significant predictor of behavioral threshold 
(Likelihood Ratio Test: χ$(1) = 5.84, p = 0.038), with the step from low to high contrast inducing a decrease in 
behavioral thresholds of 3.27 dB SNR ±1.33 (Figure 6g). 
 We applied the same analysis to test the effects of contrast and gain on psychometric slope (Figure 6f), 
again finding that gain significantly predicted psychometric slopes (Likelihood Ratio Test: χ$(1) = 6.96, p = 
0.0083), such that the psychometric slope increased by 0.16 dB/PC ±0.060 for every 100% increase in gain. 
However, contrast did not significantly improve the fit of this model (Likelihood Ratio Test: χ$(1) = 2.28, p = 0.13; 
Figure 6h). This result is not entirely unexpected, given that we observed no effect of contrast on psychometric 
slopes when comparing across sessions with different target distributions (Extended Data Figure 2b), which is 
true of the sessions used in this analysis. 
 Our findings suggest that the relationship between gain and psychometric performance is shaped by two 
sources: contrast-induced gain control and fluctuations in gain from session to session. To further disentangle 
the relationship between these two sources of behavioral modulation, we repeated the mixed effects models, 
this time using gain during the adaptation period as the predictor of interest. We hypothesized that gain in this 
period should not be predictive of behavioral performance, as there were no targets presented during this portion 
of the trial. We found that this was the case; we did not observe any predictive relationship between gain 
estimated in this period and behavioral performance (Extended Data Figure 5i-k; Extended Data Table 1). In 
summary, we found that cortical gain was modulated by both stimulus contrast and trial period, increasing when 
contrast is low and when mice were detecting targets. Furthermore, we found that psychometric performance 
was predicted by both the stimulus contrast and by session-to-session changes in cortical gain during target 
detection. 
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Figure 6. 

a, Schematic of the linear nonlinear models fit to behavioral recordings. Spectrograms concatenated across trials were used 
to estimate a STRF. Nonlinearities were fit for a static and gain-controlled (GC) model. b, Example background-locked 
responses from a well-tuned unit. The top portion of the plot is a spike raster sorted by the background scenes. The contrast 
of the adaptation and target periods is indicated by the red and blue rectangles on the top of the plot. The bottom portion of 
the plot is a trial-averaged PSTH of the observed spiking, binned every 25ms (black trace). The colored traces are the 
predictions of the static-LN model (gray) and GC-LN model (green). Correlations between the model predictions and trial-
averaged PSTH are indicated in the legend. c, STRF for this example neuron. d, Estimated nonlinearities for this example 
neuron. Points indicate the mean observed firing rate (ordinate), binned according to observed filter prediction values 
(abscissa). Solid lines indicate exponential function fits to the underlying points across validation folds. e, Gain control in 
auditory cortex during the task. Probability density of gain values across neurons in high and low contrast, separated by 
adaptation and target periods (labelled by “A” and “T”, respectively). Asterisks are the significance of post-hoc tests of target 
period for a two-way ANOVA testing the effects of target period and contrast on gain. Inset: gain distributions for each 
contrast, across all trial periods. Dashed vertical lines indicate the median of each distribution, asterisks indicate the results 
of a Wilcoxon Sign-Rank test across contrast. f, Average psychometric curves in low contrast split by cortical gain estimated 
during the target period. Light blue data points indicate average performance in sessions where gain was below the median, 
dark blue data points indicate average performance in sessions where gain was above the median (±SEM). Solid lines are 
psychometric fits to the data, with the thresholds plotted vertically from 0.5. Inset: Histogram of average target gain over 
sessions. The dashed red vertical line indicates the median gain, light blue bars indicate sessions below the median, and 
dark blue bars indicate sessions above the median. g, Relationship between gain and behavioral threshold. Circles 
represent the average gain and behavioral threshold for each session and contrast (blue and red dots indicate low and high 
contrast target periods, respectively). Gray lines indicate linear best fit. Gray asterisks indicate a significant relationship 
between gain and psychometric threshold, black asterisks indicates a significant effect of contrast. h, Relationship between 
gain and behavioral slope. Appearance as in g. In all plots: nsp>0.1; †p<0.1, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Discussion 
 Our auditory surroundings are characterized by different statistical properties that change over time. 
Changes in the dynamic range, or contrast, of acoustic inputs poses a challenge to the auditory system, which 
is composed of neurons with limited dynamic range. The efficient coding hypothesis predicts that as stimulus 
contrast changes, neurons should adjust their gain in order to match their limited dynamic range to that of the 
stimulus distribution1. Multiple studies have demonstrated that neurons throughout the auditory pathway exhibit 
such contrast gain control16,19,29. Whereas recent work has demonstrated a link between efficient cortical codes 
and human psychophysical performance19,25, it is unclear how contrast gain control dynamics are directly related 
to behavior, as neuronal responses and behavior were not observed simultaneously.  

In this study, we directly linked contrast gain control to auditory behavior by combining a theoretical model 
of efficient coding with simultaneous behavioral psychophysics and recording and manipulation of cortical 
activity. First, we developed a normative model based on efficient coding21,23 which predicted that: 1) Detection 
thresholds of targets should be lower in low contrast than in high contrast; 2) Sensitivity to changes target volume 
should be greater in low contrast relative to high contrast; and 3) Detection should adapt asymmetrically: 
increasing slowly after a switch to low contrast, but decreasing rapidly after a switch to high contrast (Figure 1). 
Then, we used a novel form of Poisson GLM to confirm that gain control dynamics in auditory cortex are indeed 
asymmetric, as previously observed (Figure 2). To behaviorally test the predictions of the normative model and 
GLM, we trained mice to detect a target embedded in background DRCs while shifting the contrast of the 
background between high and low contrast. As predicted by the model, mice had lower detection thresholds and 
were more sensitive to changes in target volume in low contrast. Behavioral adaptation was also asymmetric, 
decreasing rapidly after a switch to high contrast, and increasing slowly after a switch to low contrast, in 
agreement with our model (Figure 3). Furthermore, we found that AC is necessary for this detection-in-
background task (Figure 4). When recording in AC, we found that the parameters of neurometric functions were 
predictive of psychometric functions on a mouse-to-mouse basis, and we also showed that target discriminability 
adapted asymmetrically, as predicted (Figure 5). Finally, we found that we could predict behavioral performance 
from cortical gain on a session-to-session basis, independently of the effect of contrast (Figure 6). Taken 
together, these results support our hypothesis that efficient coding at the neuronal level shapes auditory 
behavior. 
 
The role of cortex in behavior. 

The role of auditory cortex in behavior has been subject of debate. A number of prior studies found that 
auditory cortex was not required for relatively simple behavioral tasks such as frequency discrimination or 
detection30,31. Rather, many studies found that auditory cortex is primarily involved in more complex behaviors, 
such those requiring temporal expectation32, localization33, or discrimination of more complex sounds34–36. 
Consistent with previous findings37, we found that AC inactivation selectively impaired detection of targets in a 
noisy background, but did not impair detection of targets in silence (Figure 4). Furthermore, neuronal activity in 
AC predicted variability in behavioral performance (Figures 5, 6). This set of results establishes that AC is 
necessary for the detection of targets in background noise and supports the more general notion that AC is 
required for more difficult auditory tasks. 
 While the previous work demonstrates the necessity of auditory cortex in behavioral performance, the 
brain areas and mechanisms supporting the transformation from stimulus to decision are an active field of 
study38,39. By recording during the task, we were able to leverage behavioral variability to show that task 
performance covaried with representations of targets within small neural populations (Figure 5), and with cortical 
gain (Figure 6). There is a large body of literature relating cortical codes to behavioral variability: early studies in 
the visual system suggested that information from relatively small numbers of neurons was sufficient to match 
or outperform animal behavior in psychophysical tasks40–42 and that behavioral choice can be predicted from 
activity in sensory areas28,42. These accounts suggested that variability in bottom-up sensory encoding drives 
the variability in behavioral output. However, more recent work suggests that variability in sensory areas is driven 
by top-down influences43–46, which are modulated by attention and learning47–50. A recent study imaging tens of 
thousands of neurons in the visual cortex supports this notion, finding that cortical representations had higher 
acuity than behaving mice, yet did not correlate with behavioral performance, suggesting that perceptual 
discrimination depends on post-sensory brain regions51.  

Our results suggest that bottom-up adaptation to stimulus statistics shapes behavioral output: We 
observed asymmetric time courses of target discrimination following a change in contrast (Figure 3) that were 
qualitatively consistent with the predictions of efficient coding (Figure 1), resembled contrast gain adaptation in 
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auditory cortex in the absence of behavior (Figure 2), and resembled patterns of target-driven activity in auditory 
cortex during the task (Figure 5). Indeed, there have been other studies demonstrating that individual differences 
in sensory-guided behaviors are reflected in cortical activity52,53, are bidirectionally modulated by cortical 
manipulation54,55, and can be predicted from tuning properties in auditory cortex56,57. While our results cannot 
rule out top-down input as the causal driver of sensory decisions, they do support the notion that the sensory 
information upon which decisions are made is shaped by neuronal adaptation, which thereby affects behavioral 
outcomes. 

 
Roles of gain in the auditory system. 

Neurons throughout the auditory system adapt to the statistics of the acoustic environment, including the 
frequency of stimuli over time58,59, more complex sound patterns26,60, and task-related or rewarded stimuli61–66. 
Inspired by the latter studies, we intentionally designed our stimuli using unbiased white-noise backgrounds, 
which allowed us to fit encoding models to our data. Using these methods, we focused on contrast gain control 
as a fundamental statistical adaptation that relates to efficient coding17–19,29. In this study, we developed a novel 
application of Poisson GLM that allowed us to quantify the contribution of multiplicative interactions between the 
stimulus and stimulus contrast to the activity of neurons in auditory cortex. Using the fitted parameters of the 
model, we were able to accurately estimate neuronal gain as a function of time. This approach allowed us to 
verify that gain adaptation in auditory cortex is asymmetric (Figure 2), as predicted from the normative theory 
developed in this work (Figure 1). 

Furthermore, we found that behavioral detection of targets adapted asymmetrically (Figure 3), which 
suggested that the dynamics of contrast gain control influenced task performance. Indeed we found that both 
stimulus contrast and session-to-session fluctuations in gain predicted psychometric performance (Figure 6). 
These results suggest two sources of gain modulation in auditory cortex: 1) Bottom-up adaptation to stimulus 
statistics (ie. contrast gain control), and 2) session-to-session modulation of gain. Previous studies have 
demonstrated this latter phenomenon, suggesting that top-down gain modulation underlies attention43,44,67 and 
the maintenance of optimal behavioral states68,69. Our results suggest that automatic of gain control as well as 
session-to-session fluctuations in gain modulate behavior, and provide a starting point for dissecting the neural 
mechanisms underlying these two forms of gain modulation. 

 
Cellular mechanisms of gain control. 

While this work and other studies observed contrast gain control in the auditory system, the neuronal 
mechanisms driving gain adaptation at a cellular level remain unclear. In the current study, we have likely 
recorded from a mixed population of excitatory and inhibitory neurons. Different inhibitory neuronal subtypes 
exhibit specific roles in adaptation70,71. While specific inhibitory neuronal subtypes facilitate divisive or subtractive 
control of excitatory responses in visual72,73 and auditory cortex74,75, the role of these interneurons in contrast 
gain control has been inconclusive18. Furthermore, we were able to separate the behavioral contribution of 
contrast gain control from stimulus-invariant changes in gain (Figure 6). Whether these two forms of gain control 
share common neural substrates is unclear. By combining cell-specific optogenetic methods with behavioral 
tasks, future studies may explore and test the specific role of local circuits and top-down modulation in gain 
control and behavior. 

 
The missing link between efficient coding and behavior. 
 Combined, our results develop a framework and provide support for the role of efficient neuronal coding 
in behavior. The efficient coding hypothesis has emerged as one of the leading principles in computational 
neuroscience that has shaped our understanding of neuronal coding, architecture and evolution1,22,76–78. Prior 
research found that human behavior follows principles of efficiency19,24. Our work now provides a framework for 
linking the principles of neuronal coding with behavioral performance. Additionally, we have introduced a novel 
application of Poisson GLM designed to detect multiplicative interactions between presented stimuli and other 
variables. While in this study we focused on the multiplicative effect of contrast, this approach could in theory 
be applied to any other time-varying signal that modulates neuronal gain, such as movement79,80, arousal68,69, 
or targeted experimental interventions72–75. In summary, we expect the theoretical frameworks and modelling 
methods applied here to have broad utility in the study of neuronal adaptation, a fundamental function of the 
nervous system. 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.11.455845doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455845
http://creativecommons.org/licenses/by-nc-nd/4.0/


Online Methods 
 

Animals.  
All experiments were performed in adult male (n = 19) and female (n = 19) C57BL/6 (Stock No. 000664) 

or B6.CAST-Cdh23Ahl+ (Stock No. 002756) mice (The Jackson Laboratory; age 12-15 weeks; weight 20-30g). 
Some of the mice used in these experiments were crossed with other cell-type specific -cre lines, as detailed in 
Extended Data Table 2. All mice were housed with, at most, five mice per cage, at 28°C on a 12-h light:dark 
cycle with food provided ad libitum, and a restricted water schedule (see Water restriction). All experiments were 
performed during the animals’ dark cycle. All experimental procedures were in accordance with NIH guidelines 
and approved by the Institutional Animal Care and Use Committee at the University of Pennsylvania. 

 
Surgery.  

Mice were anesthetized under isoflurane (1-3%). Prior to implantation, all mice were administered 
subcutaneous doses of buprenorphine (Buprenex, 0.05-0.1 mg/kg) for analgesia, dexamethasone (0.2 mg/kg) 
to reduce brain swelling, and bupivicane (2 mg/kg) for local anesthesia. In mice implanted with microdrives, two 
ground screws attached to ground wires were implanted in the left frontal lobe and right cerebellum, with an 
additional skull screw implanted over the left cerebellum to provide additional support. A small craniotomy was 
performed over the target stereotactic coordinates relative to bregma, -2.6mm anterior, -4.3mm lateral. Either 
custom 16-channel microdrives, 32-, or 64-channel shuttle drives (cite) holding tetrode bundles of polyimide-
coated nichrome wires were chronically implanted over auditory cortex, and tetrodes were lowered 800um below 
the pial surface. The exposed tetrodes were covered with GelFoam (Pfizer) or sterile silicone lubricant and sealed 
with Kwik-Cast (World Precision Instruments). The plastic body of the microdrive and a custom stainless-steel 
headplate were secured to the skull using dental cement (C&B Metabond) and acrylic (Lang Dental). Mice 
undergoing only behavioral experiments were implanted with two skull screws in the cerebellum, and a headplate 
was mounted on the skull as previously described. An antibiotic (Baytril, 5mg/kg) and analgesic (Meloxicam, 
5mg/kg) were administered daily (for 3 days) during recovery. 

 
Water restriction.  

Following surgical recovery (3 days post-operation), each mouse’s weight was monitored for three 
additional days to establish a baseline weight. Over the next seven days, mice were water deprived, beginning 
with a daily ration of 120uL/g and gradually decreasing their ration to 40-50uL/g. During the task, if mice did not 
receive their full ration, the remainder of their ration was provided in their home cage. Mouse weight relative to 
baseline was monitored during all stages of water restriction. Additional health signs were used to determine a 
health score and subsequent treatment plan if a mouse lost more than 20% of baseline weight, as described by 
previously published methods81 and approved by the Institutional Animal Care and Use Committee at the 
University of Pennsylvania. 

 
Behavioral apparatus.  

During the GO/NO-GO task, the mouse was head-fixed in a custom-built, acoustically isolated chamber. 
A capacitive touch sensor (AT42QT1010, SparkFun) soldered to a lick spout monitored lick activity. Water 
rewards were dispensed from a gravity fed reservoir, controlled by a solenoid valve (161T011, Neptune 
Research) calibrated to deliver approximately 4-5uL of water per reward82. Low-level task logic – such as lick 
detection, reward and timeout delivery, and task timing intervals – was directly controlled by an Arduino Uno 
microprocessor running custom, low-latency software routines. High-level task logic, such as trial randomization, 
stimulus buffering and presentation, and online data collection and analysis were controlled by custom MATLAB 
(Mathworks) software communicating with the Arduino over a USB serial port. Acoustic waveforms were 
generated in MATLAB and converted to analog signals via a soundcard (Lynx E44, Lynx Studio Technology, 
Inc.) or a National Instruments card (NI PCIe-6353) and delivered through an ultrasonic transducer (MCPCT-
G5100-4139, Multicomp). The transducer was calibrated to have a flat frequency response between 3 kHz and 
80 kHz using a 1/4-inch condenser microphone (Brüel & Kjær) positioned at the expected location of the mouse’s 
ear, as described previously83,84. During electrophysiological recording sessions, licks were detected using an 
optical interrupt sensor (EE-SX771, Omron Automation), to prevent lick-related electrical artifacts introduced by 
contact with a capacitive sensor. 

 
Behavioral timeline.  
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Each mouse underwent four stages in the behavioral task: 1) water restriction and habituation, 2) 
behavioral training, 3) psychometric testing, and, 4) offset testing. During the induction of water restriction, mice 
were habituated to head-fixation in the behavioral chambers and received water through the lick spout, getting 
a drop of water for licks separated by more than 2 s. After the mouse began to receive its entire ration by licking 
in the booth, behavioral training was initiated (typically after 1 week). Each mouse was initially trained and tested 
in one contrast condition (see Stimuli), with the initial training condition counterbalanced across mice. Behavioral 
performance was monitored during training, and mice were considered trained after completing at least three 
consecutive sessions with over 80% percent correct. After completing training, behavioral thresholds were 
measured during at least three sessions in which psychometric stimuli were presented (see Stimuli). After 
estimating the behavioral threshold for each mouse, offset stimulus sets were generated using threshold-level 
targets. After completion of at least three sessions in the offset task, each mouse was then retrained on the 
remaining contrast condition. Upon reaching the training criterion of 80% in the new contrast condition, mice 
were then tested in the psychometric and offset tasks as previously described. For mice in electrophysiological 
experiments, this sequence of training and testing was continued until the recording site yielded less than three 
units, or until the mouse stopped performing in the task. 

 
Stimuli.  

All stimuli were created in MATLAB and sampled at 192 kHz or 200 kHz and 32-bit resolution. A set of 
dynamic random chords (DRCs) were created with different contrasts, similarly to those described in previous 
studies17,19,29. To construct a DRC, amplitude modulated pure tones were generated at multiple frequencies and 
then superimposed to create a chord. In some experiments, 34 frequencies were sampled between 4 and 
~40kHz in 1/10 octave steps, in the remaining experiments, 33 frequencies were sampled between 4 and 64kHz 
in 1/8 octave steps. The amplitude envelope of each tone was generated as follows: every 25 ms, amplitudes 
for each frequency were sampled from a uniform distribution with a mean of 50 dB and a width of ±5 dB in low 
contrast or ±15 dB in high contrast. Between each 20 ms chord, the amplitude envelope of each frequency band 
was linearly ramped over 5 ms to the amplitude value for the next chord, such that the total duration of each 
chord and its ramp was 25 ms.  To synthesize the stimuli, amplitude envelopes were multiplied by a sine wave 
of their respective frequencies, and summed to produce the final waveform. Each time a set of DRCs was 
generated, 5 unique random number generator seeds were used to restrict the background noise to 5 distinct 
scenes (see raster in Figure 6 for an example of spike-locking to the repeated scenes). 

In all stages of behavioral training and testing, stimuli created for each trial consisted of a DRC background 
containing a change in contrast, and the presence or lack of a target at a delay after the change in contrast. 
Each trial began with 3 seconds of DRC background from one contrast, followed by a switch to the other contrast. 
Targets consisted of a fixed chord composed of 17 frequencies pseudo-randomly sampled from the frequencies 
contained in the DRC background, such that the target frequencies were uniformly distributed across the 
frequency range of the background. To add targets to the background noise, the target amplitude at each target 
frequency was simply added to a single chord in the amplitude envelope of the background, and ramped as 
described previously: this procedure ensured that target timing was perfectly aligned to changes in the 
background noise, removing asynchronous timing cues that could be used to detect the target. Target amplitudes 
are described in values of signal-to-noise ratio (SNR) relative to the average level of the background noise (ie. 
a 50 dB target embedded in 50 dB background would have an SNR of 0 dB). See Extended Data Table 3 for 
SNRs used for each mouse. In all trials, targets were embedded after a change in the background contrast, with 
a delay and volume dependent on the current training or testing stage. 

 
Efficient coding model. 

We simulated a model neuron that encodes incoming stimuli via an adapting neural nonlinearity. Stimuli 
were drawn from a Gaussian distribution whose mean 1 was fixed over time but whose standard deviation 2! 
could switch over time between a low and a high value (2! = 2# and 2! = 2", respectively). At each time 3, a 
stimulus 4! was drawn from the distribution 5(4!|2!) = 9(4!; 1, 2!$), transformed via a saturating nonlinearity of 
the form 1/<1 + >%&((!%(")?, distorted by Gaussian noise with variance 2*$, and finally discretized into @ discrete 
levels to generate a response A!. This discrete response was linearly decoded to extract an estimate 4̂!	of the 
current stimulus: 4̂! = 5+A! + 5,. The recent history of C stimulus estimates was used to update an estimate 2D! 
of the underlying standard deviation: 2D! = std(4̂!%#-+: 4̂!). The estimate 2D! was then used to select the 
parameters of the encoder (I, 4,) and the decoder (5+, 5,) on the next timestep. The encoding and decoding 
parameters were chosen to minimize the expected error in decoding stimuli given the neuron’s current 
estimate of the underlying standard deviation: I, 4,, 5+, 5, = 	argmin〈(4̂! − 4!)$〉./4!02D!1

21,23. 
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The parameters of the encoder and decoder were adapted based on a background stimulus with a 
mean 12 that was fixed over time and a standard deviation 22 that switched between low and high values 22# 
and 22", respectively. We used this adapting nonlinearity to determine how well this model neuron could 
discriminate target stimuli from this background. Target stimuli were sampled from a Gaussian distribution with 
a fixed mean 13 and with a variance 23 that was scaled in proportion to the variance of the background (23# =
R22

# and 23" = R22
", respectively). At each timestep, we computed the Bhattacharyya coefficient (ST) of the 

response distributions produced by background versus target stimuli: ST = ∑V5(A2)5(A3). We used 1 − ST as 
our measure of discriminability. 

We simulated the behavior of this model using a background “probe” stimulus whose standard 
deviation switched every W timesteps. We simulated @4 cycles of this probe stimulus, where each cycle 
consisted of W timesteps in the low state, followed by W timesteps in the high state. This yielded timeseries of 
the gain I and offset 4, of the adapting nonlinearity, as well as distributions of the neural response to the 
background and target stimuli at each timepoint following a switch in standard deviation. We averaged the gain 
and offset across cycles to obtain the average properties of the encoder at each timepoint following a switch. 
We used the distribution of responses to target and background stimuli, measured across cycles, to compute 
the discriminability at each timepoint following a switch. All simulations were performed with the following 
values: W = 50, @4 = 1,000,	12 = 0,	13 = 0 to 3 in 0.25 steps, σ2# = 1, σ2" = 3, R = 0.25,	2*$ = 0.01,	@ = 15,	C =
12. For Figure 1g, model discriminability in each contrast was fit with a logistic function to estimate the 
sensitivity and threshold of the model. To approximate the stimulus conditions used in the offset task, the 
target thresholds for each contrast were then used to select target volumes to plot discriminability over time 
(µ3# = 1.50, µ3" = 2.25; Figure 1f). 

 
Behavioral task.  

We employed a GO/NO-GO task to measure the detectability of targets in background. In this task, each trial 
consisted of a noise background with a contrast shift, along with the presence or absence of a target after the 
change in contrast. Mice were trained to lick when they detected a target (hit), or to withhold licking in the absence 
of a target (correct reject). This behavior was reinforced by providing a 4-5 uL water reward when the mouse 
licked correctly (hit), and by initiating a 7-10 s timeout when the mouse licked in the absence of a target (false 
alarm). Any licks detected during the timeout period resulted in the timeout being reset. In a subset of mice, we 
introduced an additional trial abort period coincident with the first part of the contrast background, before the 
contrast switch. Any licks detected in this abort period resulted in the trial being repeated after a 7-10 s timeout, 
until the mouse withheld from licking during this period. In this task, misses and correct rejects were not rewarded 
or punished. Trials were separated by a minimum 1.5s inter-trial-interval (ITI). To discourage spontaneous 
licking, licks were monitored during this period, and if any licks occurred the ITI timer was reset.  

To prevent mice from predicting target time, we varied the timing of the target relative to the contrast shift. 
This required a method for estimating hit rates and false alarm rates at different times during each trial, and to 
reward and punish the animal during these times in an unbiased manner. To approach this issue, we considered 
licks only during a 1 s response window after a target presentation (eg. if a target was presented 500 ms post-
contrast-switch, the response window persisted from 500 to 1500 ms post-contrast-switch). To apply this method 
to background-only trials, in which no targets were presented, we considered background trials to be target trials 
containing infinitely small target amplitudes. For each background trial, we assigned a response window with 
equiprobable delay matched to the target conditions and considered only licks within those “target” response 
windows. Thus, over the course of a session, we randomly sampled lick probabilities in background trials during 
the same temporal windows as those considered during target trials. Using this scheme, we treated target and 
background-only trials identically, and estimated hit rates and false alarm rates over time in an unbiased manner.  

Each mouse performed three stages in the behavioral task: training, psychometric testing, and offset testing. 
During the training task, trials consisted of two types, background-only trials or target trials presented with equal 
probability. To facilitate learning, we selected target SNRs at the highest end of the range described previously: 
in low contrast training sessions, targets were 16 dB SNR, and in high contrast training sessions, targets were 
20 dB SNR. To prevent response bias as a function of target timing, we randomly varied the target delay between 
250, 500, 750 and 1000 ms after the contrast change in each trial. During the psychometric testing task, there 
were 7 trial types consisting of background-only trials and target trials spanning six different SNRs (Extended 
Data Table 3). Based on behavioral piloting, we presented high SNR trials with a greater probability, to ensure 
that mice were consistently rewarded during the task. In low and high contrast psychometric sessions, the 
probability of a background trial was 0.4, the probability of the four lowest target SNRs was 0.05 each, and the 
probability of the two highest target SNRs was 0.2 each. As in training, target timing was varied randomly 
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between 250, 500, 750 and 1000 ms after the contrast change in each trial. After completing at least three 
sessions of the psychometric task, stimuli were generated for the offset testing task. This task consisted of 15 
unique trial types: 3 target volumes (background trials, threshold target trials, and high SNR target trials), and 5 
target delays relative to the contrast change (25, 75, 225, 475, 975 ms delay). Threshold target amplitudes were 
determined individually for each mouse by fitting performance averaged over several sessions with a 
psychometric function, and extracting the volume at which the slope of the psychometric curve was steepest. 
Based on behavioral piloting, background trials, threshold target trials, and high SNR target trials were presented 
with probabilities of 0.4, 0.2, and 0.4, respectively. Target delay on each trial was selected with equal probability. 
In all behavioral stages, trial order was pseudorandomly generated, such that there were no more than three 
target or background trials in a row. 

A subset of mice (n = 2), were presented targets in silence (Figure 4). To generate this stimulus set without 
changing the basic structure of the task or stimuli, we simply took the spectrograms of all stimuli containing 25 
dB SNR targets from the low-to-high contrast stimulus sessions, and set the stimulus power flanking each target 
to zero. This manipulation was only performed in the target period, and the low contrast adaptation period of the 
trials remained the same. Thus, the targets and adaptation periods were identical to those presented in the 
target-in-background task. To vary the difficulty of the task, the volume of the target was attenuated using the 
following values: -75, -60, -45, -30, -15, and 0 dB attenuation relative to the 25 dB SNR target. Mice were 
previously trained in the target-in-background task prior to performing the target in silence task. Before 
psychometrically varying the target attenuation, mice were trained in the new task to criterion performance. Mice 
generalized very rapidly to the new task, reaching 97% and 94% training accuracy on the first day of exposure 
to targets in silence (mice CA124 and CA125, respectively). 

 
Chronic muscimol application. 

A separate cohort of mice (n = 4) were bilaterally implanted with 26 GA guide cannulae (PlasticsOne, 
C315GMN-SPC mini, cut 5 mm below pedestal) in auditory cortex. The surgery was performed as described 
previously with the following modifications. After the skull was leveled using a stereotax, two small craniotomies 
were performed -2.6 mm anterior, ±4.3 mm lateral from bregma, over auditory cortex. The guide cannulae and 
dummy infusion cannulae (PlasticsOne, C315DCMN-SPC mini, cut to fit 5 mm C315GMN with a 0.5 mm 
projection depth) were sterilized in an autoclave. The dummy cannulae were partially screwed into the guide 
cannulae and placed in a stereotaxic clamp. After zeroing the tip of the guide cannula to the brain surface, the 
cannula was lowered to 500 μm below the cortical surface. This depth was chosen because the infusion cannulae 
(PlasticsOne, C315LIMN-SPC mini) project 500 μm from the end of the guide cannulae when completely 
inserted, leading to a final depth of 1000 μm – the location of auditory cortex. The dummy cannulae were then 
fully inserted and this procedure was repeated for the next cortical hemisphere. 
 Prior to injecting, two injection syringes (Hamilton Syringe, 10μL Gaslight #1701) and tubing (C313CT 
tubing 023x050 PE50) were backfilled with mineral oil. Sterilized infusion cannulae were then attached to each 
syringe and ~500nL of muscimol (diluted with 1x PBS to .25 mg/mL; Sigma Aldrich, M1523) or 0.9% sterile saline 
was drawn up into the injection cannulae using a dual injector (Harvard Apparatus, Pump 11 Pico Plus Elite). 
The mouse was then headfixed and the dummy cannulae were removed and sterilized. The loaded infusion 
cannulae were then screwed all the way into the guide cannulae and 400 nL of muscimol or saline was infused 
bilaterally at a rate of 250 nL/minute. The infusion cannulae were then replaced with the dummy cannulae and 
the mouse rested in its home cage for 30-45 minutes before beginning the behavioral session. 
 
Acute electrophysiological recordings.  

For acute recordings used to fit the GC-GLM model (Figure 2), neuronal signals were recorded from n = 
1 awake, untrained mouse. Prior to the recording session, the mouse was anesthetized and a headpost and 
ground pin were implanted on the skull (see Surgery). On the day of the recording, the mouse was briefly 
anesthetized with 3% isoflurane and a small craniotomy was performed over auditory cortex using a dental drill 
or scalpel (~1 mm x 1 mm craniotomy centered approximately 1.25 mm anterior to the lambdoid suture along 
caudal end of the squamosal suture). A 32 channel silicon probe (Neuronexus) was then positioned 
perpendicularly to the cortical surface and lowered at a rate of 1-2 μm/s to a final depth of 800-1200 μm. As the 
probe was lowered, trains of brief noise bursts were repeated, and if stimulus locked responses to the noise 
bursts were observed, the probe was determined to be in auditory cortex. The probe was then allowed to settle 
for up to 30 minutes before starting the recording. Neuronal signals were amplified and digitized with an Intan 
headstage (RHD 32ch) and recorded by an openEphys acquisition board85 at a rate of 30 kHz.  
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For this experiment, the mouse was presented with 3 s DRCs alternating between low and high contrast 
(uniform distribution with a mean of 50 dB and a width of ±5 dB in low contrast or ±15 dB in high contrast at a 
chord rate of 25 ms, as described in Stimuli). In order to accurately fit the GLM in an unbiased manner, these 
stimuli were highly random, composed of 100 unique chord patterns for each contrast (Extended Data Figure 
2i,j). For each of the two recording sites, 5 repeats of this stimulus set were played. 
 
Behavioral electrophysiological recordings.  

Neural signals were acquired from awake, behaving mice as they performed the psychometric and offset 
testing tasks described previously. Chronically implanted, 16-, 32-, or 64-channel microdrives85,86 were 
connected to one or two 32 channel Intan amplifier headstages. Amplified signals were recorded at 30 kHz using 
an openEphys acquisition board via an SPI cable, where the signals were digitized. 

For all recordings, broadband signals were filtered between 500 and 6000 Hz, offset corrected, and re-
referenced to the median across all active channels. The preprocessed data was then sorted using KiloSort87 or 
KiloSort2 and the resulting clustering was manually corrected in phy2 according to community-developed 
guidelines. The resulting units were labelled as single units if they exhibited a clear refractory period and did not 
need to be split. Splitting assessments were made through manual examination of principle component features 
for the two best channels of a cluster. If two noticeable clusters in feature space were evident in a unit, the unit 
was either manually split, or classified as a multiunit. 

 
Generalized linear model. 

To justify the form of GLM used here, we discuss a how a model neuron could implement gain control in 
the simplest terms, and then structure our inference model to extract the parameters of this model neuron. We 
will assume that the activity of the model neuron is driven by three sources: 1) stimulus drive, 2) stimulus contrast, 
and 3) the multiplicative interaction between the two, which we use to define the gain (for a formal definition of 
this forward model and the inference model, see Supplementary Information). 

As discussed previously, the stimulus used in our experiments is composed of many frequencies that 
change in loudness in discrete time steps: 
 

]!,6 ∼ _(1, σ!) 
 
where ]!,6 is the stimulus spectrogram that varies as a function of time 3 and frequency R. Each time and 
frequency bin of ] is sampled from a uniform distribution defined by an average value 1 and contrast σ!. 
 We assume that the hypothetical neuron responds selectively at some frequency and time lag, defined 
by a filter, or STRF β7,6 with history ℎ and frequency R components. Given β, we can define the stimulus drive 
"! as 

 "! = ]!β (1) 

 
where at each time 3, ]! is a row vector of size c frequencies times d lags (ie. the “unrolled” lagged stimulus 
spectrogram) and β is the STRF unrolled to a single column vector of the same size. 

In the spirit of efficient coding theory, and as shown in previous work, we assume that the gain e of the 
neuron should be inversely proportional to the contrast, such that e(σ) ∝ 1/σ (ie. when contrast is low gain 
should be high, and vice-versa). We also define “neutral” gain to be the average of the gain of the neuron in low 
and high contrast. Putting these two features together, we can summarize the gain of the neuron as 
 

 e(σ) =
σ$

σ!
 (2) 

 
where σ$ is the harmonic mean of the contrast in the low and high conditions (see Supplementary Information). 
In the case of a 3-fold change in contrast, this function constrains the gain of the neuron between 0.5 and 1.5, 
with a neutral value of 1. As mentioned previously, we consider gain to be the multiplicative interaction between 
the stimulus drive and the contrast, such that the contribution of gain control to the response of the neuron is 
related to "! ⋅

89
8!

.  

 To summarize, we considered a hypothetical neuron driven by the stimulus according to a STRF β and 
by the interaction between the stimulus drive and the contrast "! ⋅

89
8!

. To infer the relative weights of each of 
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these components of the neural response, we defined a Poisson GLM with an intercept term and the following 
predictors: 

 "! ,
σ$

σ!
, "! ⋅

σ$

σ!
 

 

(3) 

 
In other words, the model is composed of a stimulus predictor "!, a contrast predictor σ$/σ!, and their 

interaction. Therefore, the GLM models the firing rate λ at time 3 as a Poisson distribution with the following 
mean: 

 λ! = >"5 ij, + "!j+ + "! ⋅
σ$

σ!
β$ +

σ$

σ!
j:k 

(4) 

 
where j,…j: are the parameters to be inferred. Based on our behavioral data (Figure 3) and the predictions of 
the efficient coding model (Figure 1), we expected the influence of contrast on neural gain to be asymmetric and 
smooth. To enable the GLM to capture both of these qualities, we first defined the contrast predictors from a set 
of cubic B-spline temporal basis functions, then defined separate contrast predictors for transitions to low and 
high contrast. Incorporating these changes, we can redefine equation 4 above as 

 m/λ; = j, + "!β+ + "! ∘ T!<β$ + T!<β: 
(5) 

 
where ∘ denotes element-by-element “broadcasting” multiplication and T!< is a matrix of contrast predictors σ$/σ! 
convolved with a set of basis functions and separated by contrast transitions (see Supplementary Information). 
For the sake of clarity, note that in the expression above, j, is a number, " is a column vector of length W, j+ is 
a number, T< is a W-by-2S matrix, and j$ and j: are column vectors of length 2S, where S is the number of 
splines. 
 So far, we outlined a hypothetical neuron which implements gain control, and a GLM with which we can 
approximate the behavior of this neuron. Next, we describe how to use the fitted parameters to quantify the gain 
of the neuron. Conceptually, an increase or decrease in the gain of the neuron is analogous to more or less 
sensitivity to small changes in the stimulus. Based on this intuition, we focused on how the response of the 
neuron (as modelled by a fitted GLM) is expected to change between conditions where the gain is expected to 
contribute (ie. in the presence of gain control) and where it is not (ie. in the absence of gain control, where gain 
is “neutral”). Following this logic, we derived a definition for gain '! as the ratio between the sensitivity of the 
fitted model with changes in contrast, compared to the sensitivity of the same model when the contrast is at a 
reference value, which we defined previously as '! = 1: 

 '! =
β+ + T!<β$
β+ + T,β$

 (6) 

 
where '! is the estimated gain at time 3, and T, is a reference contrast design matrix identical to T!< except that 
all non-zero elements are set to 1 (see Supplementary Information for full derivation of '!). 
 To fit the model, we implemented a two-step procedure. In the first step, the STRF β of the neuron was 
estimated according to the model  

 m/	λ! = α + ]!β (7) 

 
For the second step, we calculated the stimulus drive as described in equation 1, and then fit equation 5 to the 
data for each neuron using glmfit in MATLAB. This entire fitting procedure was 10-fold cross-validated with folds 
stratified across trials of each contrast. In the first step, we fit the STRF β with c frequency bins according to the 
stimulus spectrogram (c = 33 or 34, see Stimuli) and a history window of 300 ms (d = 12). When fitting the full 
model, we defined the contrast design matrix T!< to capture 1000 ms of contrast history around each transition 
(d< = 40), convolved with a set of B-spline temporal basis functions88 (here, we used B-splines with a degree of 
3 and 3 equally-spaced knots, constrained to go smoothly to zero at the longest lag, which implied that S = 4). 

To validate the model, we first simulated neurons according to the forward model outlined above 
(Extended Data Figure 2a) while varying the amount of gain control and the temporal trajectory of gain in different 
simulation runs. We found that the GLM accurately predicted the STRF shape, spike rates and gain trajectories 
across a variety of simulation parameters (Extended Data Figure 2c, e-h). For a detailed description and 
discussion of the simulation results, see Supplementary Information and Extended Data Table 4. 
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Behavioral and neural detection performance. 

To calculate performance in the target-in-background detection task we adopted commonly used signal 
detection theory methods40,89 to estimate the ability of an ideal observer to discriminate between two sensory 
distributions: in our case, a distribution for target trials and a distribution for background trials. When analyzing 
behavior, we computed the percent correct performance of an ideal observer90 as a function of the probability of 
hits and false alarms: 
 

 5r = s%+ t
s(d) − s(cu)

√2
w (8) 

 
where s%+ is cumulative probability of the normal distribution (/xAyrzR in MATLAB), s is the inverse of the 
normal distribution (ie. the z-score, /xAy{/| in MATLAB), d is the hit rate, and cu is the false alarm rate. For 
psychophysical performance, hit rates and false alarm rates near 0 and 1 were adjusted using the log-linear 
rule91, to reduce biases in performance estimation caused by low numbers of trials.  

To calculate neural performance in the same reference frame as the behavior, we employed similar ideal 
observer techniques. First, neuronal responses (either spike rates or single units, or population projection 
values), were averaged in a 100ms window post target onset (for background trials, this window was randomly 
chosen on each trial to coincide with target presentation times on target trials). Then, using the distributions of 
responses during target and background trials, we computed receiver-operating-characteristic curves and took 
the area under the curve (AUC) as the percent correct of an ideal observer discriminating between the target 
and background distributions. To determine whether the AUC value for a given set of trial distributions was 
significantly different from chance, we performed a bootstrap procedure where we sampled from all the trials 
with replacement 500 times and recomputed AUC for each sample. If the 95% confidence intervals for this 
bootstrapped distribution did not include chance (.5), we defined that AUC value as significant. For population 
analyses which generated single-trial predictions, neural hit and false alarm rates were transformed to percent 
correct as described above. 

To characterize performance, psychometric curves were fit with a logistic function:  
 

 ! = 	} + (1 − } − ~) ∗ 	
1

1 +	>=%>?
 (9) 

 
where � is the x-offset of the function, j determined the sensitivity of the function, } determined the guess rate 
(lower bound), ~ determined the lapse rate (upper bound) and " was stimulus volume. α/β determined the 
threshold of this function, defined as the volume corresponding to the steepest part of the curve. This function 
was fit to behavioral or neural performance using constrained gradient descent (Ry{/rx/ in MATLAB) initialized 
with a 10x10 grid-search of parameters � and j. 
 To characterize adaptation time constants, adaptation curves were fit with an exponential function 

 ! = 	Ä + Å ∗	>
%!@ 

(10) 

 
where Ä determined the y-offset of the function, Å was a multiplicative scaling factor, and Ç was the time constant 
of the exponential in units of time 3. This function was fit to behavioral or neural responses using constrained 
gradient descent initialized with a 10x10x10 grid search across all three parameters. 

 
Population response metrics.  

On sessions where three or more neurons were simultaneously recorded, we used a population vector 
technique27 to estimate the ability of neural populations to discriminate targets from background. First, spike 
rates in each trial were averaged in a 100ms window post-target onset. Then, using a leave-one-out procedure, 
we computed a trial averaged population vector for target trials, |3, and a separate average population vector 
for background trials, |2. We then estimated the coding direction in high dimensional neural space that best 
separated the target and background responses: TÉ = |3 − |2 . The held out trial was then projected along this 
dimension, by taking the population response vector on that trial |!ABCD and projecting it along the estimated 
coding direction using the dot product: 5AxÑ>r3{x/	|ÄmÖ> = 	|!ABCD ∗ 	TÉ. This procedure was repeated holding out 
each trial, and estimating the coding direction from the remaining trials. For psychometric testing sessions, the 
target responses from the two loudest target volumes were used to estimate coding direction, and in offset testing 
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sessions the target responses from the high SNR target trials were used. After computing projections for every 
trial, the resulting matrix was normalized between 0 and 1. 
 
Population classifier.  

Based on previously described methods28, we used a criterion-based decision rule to estimate how a 
hypothetical down-stream neuron may read out the neural activity of a population of neurons. As before, trial 
distributions of neural responses to targets or background were created from the average activity in a 100ms 
window post-target. Then, we sampled 100 criterion values between the minimum and maximum response, and 
for each criterion estimated the proportion of correct trials under two decision rules: 1) report target present if the 
response is greater than the criterion, or, 2) report target present if the response is less than the criterion. By 
assessing these two decision rules, neurons that were suppressed by target presence were treated equally to 
neurons that were enhanced by target presence. Finally, we chose the criterion and decision rule that yielded 
the highest proportion of correct trials, and computed neural hit rates and false alarm rates for each target level, 
and background-only trials. These hit rates and false alarm rates were then transformed to percent correct 
according to Equation 8. 
 
Linear-nonlinear model. 

First, we selected only neurons in the dataset which had reliable responses to stimulus repeats. To 
determine response reliability, we computed a noise ratio (NR) for each neuron, which describes the amount of 
variability in the response due to noise versus the amount of variability in the response driven by the stimulus92,93. 
Values approaching 0 indicate increasingly reliable responses to the stimulus, so for the remaining analyses, we 
included neurons with NR < 100. 

The linear nonlinear model was composed of a spectrotemporal receptive field (STRF) and a set of 
rectifying nonlinearities. The STRF β was fit using normalized reverse correlation 

 β = []]3]%+]λ (11) 

 
where ] is the stimulus design matrix  ]! defined in equation 1 and λ is the spike count in each 25 ms bin of the 
DRC stimulus. When defining ], we used a history window of 300 ms (d = 12) and frequency bins corresponding 
to the frequencies composing the dynamic random chords (see Stimuli). After fitting the STRF, we fit the 
nonlinearities of the neuron. This two-step fitting procedure was repeated using 10 fold cross-validation, as 
described below. 

For each fold, we selected 90% of the trials for training, leaving the remaining 10% to be held out for 
testing. Within each trial, we excluded neuronal responses around transitions from silence, or transitions in 
contrast, to prevent the model from overfitting strong transients in the neural response. Additionally, we excluded 
neural responses within a 50ms window after target presentation, to prevent overfitting of target responses. 
Given these exclusion criteria, we calculated the duration of stimulus sampled in the target period for each trial, 
and, for each trial, sampled the same duration of stimulus within the adaptation period. This procedure ensured 
that the model was fit to the same amount of high and low contrast stimulation per trial, to minimize overfitting to 
one contrast condition. Then, a stimulus design matrix ] was defined using these stimulus periods, and the 
STRF was fit using equation 11. During an initial pilot experiment, we tested whether STRF properties were 
affected by stimulus contrast, and found STRFs to be largely stable when estimated separately for each contrast 
(Supplementary Information and Extended Data Figure 5b-g). Therefore, we used both periods of contrast to 
estimate β.  

Using the STRF fit to the training data, we computed the linear drive "! by convolving the STRF with the 
lagged spectrogram of the training stimulus (equation 1). For the GC-LN model we separated the linear 
predictions into low and high contrast periods, while for the static-LN model all matched time points were used. 
We generated a histogram of the linear prediction values (50 bins), and for each bin, computed the mean spike 
rate of the neuron when the linear prediction fell within those bin edges (Figure 6d, scatter points). The resulting 
set of linear prediction values and average spike rates were fit with an exponential function: 

 ! = Ä + Å>4(?%E) (12) 

 
where Ä determined the minimum firing rate, Å was a multiplicative scaling factor, r determined the gain of the 
exponent, and z determined the x-offset, or firing threshold of the neuron. This function was fit to each cell using 
constrained gradient descent (Ry{/rx/ in MATLAB), using a 10x10 grid search for parameters Å and r. The gain 
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for each neuron was defined as c. This entire process was repeated for each cross-validation fold, and the final 
parameter estimates for the STRF and nonlinearities were taken as the average over the 10 runs. 
 To determine the relationship between neuronal gain and behavioral performance, we computed the 
average neural gain across all noise responsive neurons (NR < 100) in each session for the adaptation and 
target periods in the trial. We then compared the session-averaged gain values to the fitted thresholds and slopes 
of the psychometric curve across sessions using the mixed-effects linear models outlined in the main text. 
 
Inclusion criteria.  

Unless otherwise noted, behavioral sessions in which the false alarm rate exceeded 50% were discarded 
from analysis. One mouse (ID: CA122) had consistently high false alarm rates in the high contrast condition, so 
we excluded high contrast sessions from this mouse from all analyses. For Figures 5 and 6, we removed neurons 
with low spike rates (<1Hz) and noise-like or inverted (ie. upward inflected) spike waveforms. To determine 
waveform quality, we computed the width of each waveform at half of the minimum value (FWHM) and its 
correlation with the average waveform over all neurons. Neurons whose waveforms had outlier FWHM values 
({4xÖ3m{>A in MATLAB), negative correlations, or were not significantly correlated with the average (Bonferoni 
corrected p > 5.85e-6) were removed from further analysis. For Figure 5g-i, sessions with stable population 
decoding performance were included (defined as sessions where more than half of the target volumes or times 
elicited significant population AUC values, as determined by the bootstrap procedure described previously). For 
Figure 6e-h, only neurons with noise ratios less than 100 were included in all analyses. 
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Supplementary Information 
 
Supplemental Experimental Procedures 
 
Acute electrophysiological recordings with muscimol or saline. 

Neural signals were recorded from n = 2 awake, untrained mice. Prior to the recording session, each 
mouse was anesthetized and a headpost and ground pin were implanted on the skull (see Surgery in the main 
text). On the day of the recording, the mouse was briefly anesthetized with 3% isoflurane and a small craniotomy 
was performed over auditory cortex using a dental drill or scalpel (~1mm x 1mm craniotomy centered 
approximately 1.25mm anterior to the lambdoid suture along caudal end of the squamosal suture). A 32-channel 
silicon probe (Neuronexus) was then positioned perpendicularly to the cortical surface and lowered at a rate of 
1-2μm/s to a final depth of 800-1200μm. As the probe was lowered, trains of brief noise bursts were repeated, 
and if stimulus locked responses to the noise bursts were observed, the probe was determined to be in auditory 
cortex. The probe was then allowed to settle for up to 30 minutes before starting the recording. 

For the muscimol and saline recordings (Extended Data Figure 3), a durotomy was performed over the 
injection site and baseline neural responses to the behavioral stimuli were recorded. Then, 2.5μL of .25mg/mL 
muscimol or 0.9% sterile saline solution was topically applied to the surface of auditory cortex and allowed 30 
minutes to penetrate the tissue. The same stimuli were then recorded again after the elapsed time. In these 
recordings, the same targets and DRC background presented during behavior were presented. Neural signals 
from n = 2 mice (1 mouse for muscimol application, 1 mouse for saline application) were amplified and digitized 
using a Cheetah Digital LYNX system (Neuralynx) at a rate of 32kHz. 
 
Acute electrophysiological recordings for Extended Data Figure 5b-g 

Neural signals were recorded from n = 9 awake, untrained mice of several -cre strains (somatostatin-cre, 
n = 5; parvalbumin-cre, n = 2; VGAT-cre, n = 2). These mice were implanted with a headplate and groundpin, 
as described in Surgery. Additionally, each mouse was bilaterally injected with 700 µL of Flex-ChR2 during the 
initial surgery in auditory cortex, then bilaterally implanted with opto-cannulae which projected 500 um below the 
brain surface above auditory cortex. During the recordings, mice were presented with dynamic random chord 
stimuli (DRC) which changed contrast every 3 s. At each time step, the chords were randomly drawn from a 
uniform distribution with a center of 50 dB SPL and a spread of either 7.5 dB SPL or 15 dB SPL in low and high 
contrast respectively. Each chord was presented for 4 ms with a 1 ms linear ramp between each chord. Chords 
were composed of 25 frequencies between 1 and 64 kHz, spaced 0.25 octaves apart. On a subset of trials, 470 
nm LED or laser light was continuously shone or pulsed at 25 Hz through the opto-cannulae for the duration of 
the 3 s of contrast period (power measured at the fiber tip ~2-5 mW). For the purposes of this study, we discarded 
all trials with light presentation. 

 
Supplemental Results 
 
Muscimol application disrupts cortical encoding of targets. 

In n = 2 awake, naïve mice, we first recorded baseline responses to the stimuli used in the psychometric 
task, then topically applied muscimol or saline, waited 30 minutes, and recorded stimulus responses again. After 
muscimol application, there was a marked decrease in neural responses to targets compared to the baseline 
recordings (Extended Data Figure 1b, left). Notably, in our saline control, we observed little to no change in 
neural responses after saline application (Extended Data Figure 4b, right). We next compared how contrast, 
volume and muscimol or saline application changed the responses during the pre- and post-application periods, 
finding that muscimol significantly reduced the firing rates between pre- and post-application periods, while saline 
significantly increased firing rates (Extended Data Figure 4c,d, Extended Data Table 1). We speculate that the 
small increase in firing rate between pre- and post-saline application was due to changes in recording quality or 
due to neural drift over the ~1 hour recording session, and note that the effect size of saline pre-post application 
is very small (η2 = 0.0046) compared to the effect size of muscimol (η2 = 0.38). We then used a three-way ANOVA 
to compare the effects of muscimol, contrast, and target volume on target responses in the saline and muscimol 
recording sessions. We found a significant main effect of muscimol (F(1) = 322.65, p = 4.88e-67) and volume 
(F(6) = 15.48, p = 1.98e-17), but no main effect of contrast (F(1) = 0.39, p = 0.53), indicating nearly complete 
suppression of responses to both targets and background in high and low contrast (Extended Data Figure 4e,f). 
These results confirmed that muscimol effectively disrupts the cortical coding of our behavioral stimuli. 
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Muscimol application does not prevent licking. 
An additional alternative effect of muscimol is a general loss of the ability to lick. To assess this, we monitored 

the lick probability of the mice throughout the trial duration, and found that muscimol specifically reduced licking 
responses during the period where targets were presented (Wilcoxon rank-sum test: T = 337, z = -4.23, p = 
2.34e-5; Extended Data Figure 4g, right panel of Extended Data Figure 4h). Mice also tended to lick immediately 
after the trial onset (Extended Data Figure 4i, green trace), but we found that the lick rates under muscimol and 
saline conditions were identical during this period (Wilcoxon rank-sum test: T = 528, z = 0.23, p = 0.81; Extended 
Data Figure 4h, left panel). These results suggest that muscimol does not impair the mouse’s ability to lick in 
general, but results in a specific deficit in licking in response to targets. 
 
STRF are stable across contrasts. 

Based on a pilot study of neuronal data acutely recorded from auditory cortex, we tested whether STRF 
properties were affected by stimulus contrast. We recorded spiking activity in response to DRCs that changed 
contrast every 3 seconds. Out of the 700 units identified from n = 9 mice, we selected the subset of neurons with 
noise ratios (NR) below 100 for further analysis (n = 129). For each neuron, we computed the spectrotemporal 
receptive field (STRF) using a spike triggered average in each contrast (Extended Data Figure 5b), then 
computed 100 “random” STRFs by shuffling the stimulus in time within each contrast. For each shuffle, we 
computed the correlation of the true low contrast STRF with the shuffled high contrast STRFs to generate a null 
distribution of low-high contrast STRF correlations. We then compared the true correlations of the low and high 
contrast STRF with this null distribution, defining them as significantly correlated if the true correlation fell outside 
the 99th percentile of the null distribution. We found that nearly all of the low and high contrast STRFs were 
significantly correlated (124/129 neurons, 96%), suggesting that contrast doesn’t change the overall structure of 
the STRF (Extended Data Figure 5d). 

To further quantify these results, we tested whether more concrete STRF properties such as best 
frequency (BF), lag, and max value were affected by contrast. First, we de-noised each STRF by determining 
the significance of each pixel. To do this, we compared the value of each pixel to the distribution of shuffled 
values for that pixel, and retained only pixels greater than three standard deviations of the shuffled value. Based 
on the de-noised STRFs, we computed frequency and temporal components by averaging over each STRF 
dimension (Extended Data Figure 5c). We then estimated the BF and lag as the max of these components, and 
determined the max STRF value by finding the max value over all pixels. Next, we compared each measure 
across STRFs from low and high contrast. We found that the maximum pixel value was significantly greater in 
high contrast (Median (Mdn) = 1.33, inter-quartile range (IQR) = 1.28) than in low contrast (Mdn = 0.56, IQR = 
0.62; Wilcoxon signed-rank test: z = -9.78, rank = 0, p = 1.39e-22; Extended Data Figure 5e, e). On the other 
hand, we found a non-significant trend towards lower BFs in low contrast (Mdn = 19.03 kHz, IQR = 35.74 kHz) 
compared to high contrast (Mdn = 22.63 kHz, IQR = 47.09 kHz; Wilcoxon signed-rank test: z = 1.78, rank = 1761, 
p = 0.076; Extended Data Figure 5f), and no significant change in lag (Wilcoxon signed-rank test: z = -0.93, rank 
= 1776, p = 0.35; Extended Data Figure 5g). Taken together, these results demonstrate that the frequency and 
temporal modulation of sound responses are consistent across contrasts, supporting previously published 
findings. 

 
Generalized linear model of contrast gain control dynamics 
 
 A primary goal of the current study was to estimate the influence of stimulus contrast on neural gain 
dynamics, for instance, after a switch from one contrast to another. To approach this problem, we first define a 
model neuron with dynamic gain control. 
 
Forward model 
 To best approximate the stimuli used in our experiments, we define the stimulus environment of our 
model as an c-dimensional signal that evolves in discrete time steps: 
 

]!,6 ∼ 9(1, σ!), 
 
where ]!,6 is a stimulus spectrogram that varies as a function of time 3 and frequency R. Each time and frequency 
bin of ] is sampled from a normal distribution defined by an average value 1 and contrast σ! at time 3. 
 To approximate the behavior of real neurons, we define a model neuron that has a two-dimensional linear 
filter (representing the STRF of the neuron): 
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β7,6 = 9(y,  T; 	ℎ, R), 

 
where stimulus filter β7,6 is defined as a two-dimensional gaussian distribution evaluated at lag ℎ and frequency 
R. The filter location in frequency-history space is defined by its mean y and covariance matrix T. The stimulus 
drive of the neuron at each time step, "!, is then computed as the convolution of the stimulus matrix and the 
linear filter: 

 "! = X;β (13) 

 
  
where ]! at each time 3 is a row vector of length c ⋅ d (ie. the unrolled stimulus spectrogram lagged by H lags) 
and β is the filter, unrolled as a column vector of the same length. 
 The model neuron has a firing rate that depends only on the stimulus drive "! and the contrast σ! at time 
3. We then assume that the number of spikes !! emitted by the neuron at each time step follow a Poisson 
distribution:  
 

!! ∼ ãx{44x/(λ!) 
 
where λ! is the firing rate at time 3, given by 
 

 λ! = >"5[Ä + e(σ!)Å("! − r)] 
(14) 

 
where e is a gain control function, and Ä, Å, and r are parameters of the model. The parameter Ä represents the 
baseline response of the neuron, Å is a scaling factor of the stimulus drive, and r represents the operating point 
of the gain. We remove the obvious degeneracy in the definition of g and b (only their product matters) by 
requiring that g be adimensional and such that 
 
 

 
1

2
[g(σF) + e(σ#)] 	= 	1 (15) 

 
where σ" and σ# are the high and low contrast values. This constraint forces the neutral value of the gain, e	 =
	1 to be the midpoint between gain in the high and low contrast conditions. 
 
Optimal gain control 
 In the spirit of the efficient coding principle, we derived a form for e(σ) that will guarantee that, under 
certain conditions, the dynamic range of the neuron will be approximately conserved under changes in contrast. 
To do this, we define the dynamic range as 

 å(σ) = λ(µ + σ) − λ(µ − σ) (16) 

 
which can be rewritten using equation 2 as 

 å(σ) = >Cç>"5<e(σ)Å(µ + σ − r)? − >"5<e(σ)Å(µ − σ − r)?é. (17) 

 
If the argument of the exponentials is not too large, we can linearize this expression to obtain 

 å(σ) ≃ 2>CÅσ	 ⋅ e(σ) (18) 

 
and that å is approximately independent of σ provided that e(σ) ∝ 1/σ. So, for our model, we set 
 

 e(σ) =
σ$

σ!
 (19) 

 
where σ$ is the harmonic mean of σ" and σ#: 
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 σ$ ≔ i
1

2
ë
1

σ"
+
1

σ#
ík

%+
= 2

σ"σ#
σ" + σ#

 (20) 

 
 Finally, to validate that our fitting methods are sensitive to real world neurons, which do not necessarily 
adjust their gain to account for changes in contrast according to the model just described, we consider an 
interpolation scheme that smoothly transforms a model with positive gain control to a similar model without gain 
control, or with “anti” gain control. To do this, we redefine e as follows: 

 e(σ) → ξe(σ) + (1 − ξ), −1 ≤ 0 ≤ 1 (21) 

 
so that by changing ξ we can control whether gain control is optimal (ξ = 	1), non-existant (ξ = 	0), or “anti” (ξ =
	−1). 
 Putting everything together, the final expression for the firing rate of the forward model is 
 

 λ! = >"5 ñÄ + Å óξ
σ$

σ!
+ (1 − ξ)ò ("! − r)ô 

(10) 

 
Generalized linear model 
 The forward model developed in the previous section provides a simple approximation of the relationship 
between the stimulus, stimulus contrast and neuronal responses.  We also note that the form of the forward 
model lends itself to estimation using a Poisson GLM, provided that the predictors are chosen appropriately. As 
such, we define the inference model as a Poisson GLM with an intercept term and the following predictors: 
 

("! − µ),
σ$

σ!
, ("! − µ)

σ$

σ!
 

 
In other words, the model is composed of a stimulus predictor ("! − µ), a contrast predictor (σ$/σ!), and their 
interaction. Therefore, the GLM models the data at time 3 as a Poisson distribution with the following mean: 
 

 λ! = >"5 ij, + j+("! − µ) + j$
σ$

σ!
("! − µ) + j:

σ$

σ!
k (22) 

 
where j,…j: are the parameters to be inferred, and, as defined previously, "! is the stimulus drive of the neuron 
determined by its STRF. 
 
Model fitting 
 To fit the model, we took a two-step approach. First we found the best-fit filter (STRF) for the neuron. 
Then, we fit the full GLM to determine how the linear drive determined by the STRF is modulated by contrast. In 
the first step, the linear drive is obtained by fitting the model 

 m/	λ! = α + ]!β (23) 

 
where ]! is a design matrix defined as a function of frequency bins R and history lags ℎ, and β is the fitted STRF. 
Stimulus drive "! is then computed as in equation 1. 
 We then define the full model according to equation 11, 
 

 m/	λ! = j, + j+"! +öj$B

2

BG+
"! ⋅ (ÅB ∗ r)(3) +öj:B(ÅB ∗ r)(3)

2

BG+
 (24) 

 
 
where r(3) = σ$/σ! and {ÅB}BG+

2  is a set of cubic B-spline temporal basis functions. By defining a matrix T as follows 

 T!B = (ÅB ∗ r)(3) 
(25) 

 
we can rewrite equation 13 in a more compact form: 
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 ln	λ = j, + "j+ + " ∘ Tj$ + Tj: (26) 

 
where ∘ denotes element-by-element “broadcasting” multiplication. 
 To fit asymmetric changes in firing rate after transitions to low or high contrast, we took the simple 
approach of defining separate sets of contrast predictors for each transition type. This amounted to modifying T 
by masking transitions to high contrast or transitions to low contrast with zeros, such that the model fit a window 
d< of 40 time bins around each contrast transition. To do so, we created a new matrix T< by duplicating T column-
wise. Then, we define the first S columns as predictors for the transition to low contrast by masking a 1 second 
period around each transition to high contrast with zeros. This same procedure was repeated for the remaining 
columns in T<, instead masking out the transition to low contrast. Substituting this into equation 15, we obtain 

 m/	λ = j, + "j+ + " ∘ T<># + T<>$ 
(27) 

 
For the sake of clarity, note that in the expression above, j, is a number, " is a column vector of length W, j+ is 
a number, T< is a W-by-2S matrix, and j$ and j: are column vectors of length 2S. 
 
Defining gain 
 We have outlined a forward model for simulating neural activity according to efficient coding of stimulus 
contrast, and described an inference model (a Poisson GLM) for estimating the influence of the stimulus, stimulus 
contrast, and their interaction. In this section, we describe how to use the fitted parameters to quantify the amount 
of gain control in the neuron. 
 Conceptually, an increase or decrease in the gain of a system is analogous to more or less sensitivity to 
small changes in the stimulus, dependent what is modulating the gain (in our case, the recent history of the 
contrast). Based on this intuition, we focus on how the response of the neuron (as modeled by a fitted GLM) is 
expected to change between conditions where the gain is expected to contribute (i.e. in the presence of gain 
control) and where it is not (ie. in the absence of gain control, where gain is “neutral”). 
 To do this, we start by considering the gradient of the link function (the log rate) at time 3 with respect to 
]!:  

 
η! = ∇?!m/λ! = ∇?![β, + "!β+ + "!T!β$ + T!β:]	
						= ∇?![β, + (]!β)β+ + (]!β)T!β$ + T!β:]	
						= β(β+ + T!β$) 

(28) 

 
We can immediately read equation 17 as “the STRF of the model is modulated by a factor of β+ + T!β$ at time 
3”, and define the gain based on this intuition, but we will take a slightly longer and more formal route to get to 
the same result. 
 The gradient η is a vector with the same dimensionality of β+ and T!β$, and it encapsulates all information 
about the sensitivity of the link function to small changes in ]! at a given time. Because ]! is not a scalar (it has 
d ⋅ c components), these changes can happen along many dimensions, and the sensitivity can be different in 
different directions. We can define the gain based on the sensitivity to changes in a specific direction | (assuming 
for concreteness that ü|||ü = 1, although this is not necessary for the derivation below). If ]! = A ⋅ |, where A is 
some scalar, then 

 
zm/λ!
zA

= ⟨η! , |⟩ 
(29) 

 
by definition of the gradient. We can then define the gain ' along direction | as the ratio between the sensitivity 
of the log rate to changes along | and the sensitivity one would have if the contrast T! was at some reference 
value T, where we define '	 = 	1 by construction. If we do so, we obtain 
 

 

'! = ë
zm/λ!
zA

ít
zm/λ(T = T,)

zA
w

%+
	

						=
⟨β, |⟩(β+ + T!β$)
⟨β, |⟩(β+ + T,β$)

	

						=
β+ + T!β$
β+ + T,β$

 

(30) 
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Note that this definition does not depend on the initial choice of |, or even on the specifics of the choice of basis 
functions used to define T. In conclusion, by reasoning about the sensitivity of the response of the fitted GLM, 
we define a value '! which captures the relationship between the true gain e and the stimulus contrast r!. 
 
Simulations 
 To validate our inference model, we simulated neural activity according to the generative model defined 
in the Forward Model section (Extended Data Figure 2a). We were interested in capturing several dimensions 
upon which the generative model could vary, namely, the amount of gain control in the simulated neurons ξ, and 
the dynamics of the gain function e. 

To parametrically control the evolution of gain over time, we simulated different temporal trajectories of 
gain control, by modifying e(σ!) as follows 

 e(σ4 , τ4)! = g(σ4%+) +	(g(σ4) −	g(σ4%+)) ⋅ >"5(τ4 , 3) 
(31) 

 
where the gain e after a switch to contrast σ4 transitions from the gain in the previous contrast e(σ4%+) to the 
gain in the current contrast e(σ4) according to an exponential function with time constant τ4. Note that τ4 could 
vary between the two contrasts to simulate asymmetric dynamics. 
 For each neuron, we first generated a STRF and linear drive according to equation 1 (Extended Data 
Figure 2b,d). For different sets of simulated neurons, we parametrically varied the amount of gain control ξ 
between -1 and 1, and varied the gain time courses to simulate three types of gain adaptation dynamics: 1) Slow 
transitions to low contrast with fast transitions to high contrast, 2) Fast, symmetric transitions to each contrast, 
3) Fast transitions to low contrast and slow transitions to high contrast (Extended Data Figure 2f).  

We simulated 100 neurons for each combination of ξ and τ, with other simulation parameters held 
constant (Extended Data Table 4). Extended Data Figure 2e plots the average firing rates and overlaid model 
fits for three sets of simulations with optimal gain control (ξ = 	1) while varying τ. Importantly, the model flexibly 
captured the gain dynamics in the three simulated adaptation conditions, with the gain estimate '! following the 
true gain trajectory (Extended Data Figure 2f). For additional values of ξ, the model accurately predicted the firing 
rates (Extended Data Figure 2g) and gain trajectories (Extended Data Figure 2h). We observed that some 
combinations of ξ and τ elicited large firing rate transients, particularly in the cases where simulated gain slowly 
adapted after a switch to high contrast (bottom panels in Extended Data Figure 2e, f, g, h). This behavior is 
expected, as gain remains relatively high for a longer period after the switch, causing large fluctuations in firing 
rate as the stimulus drive during high contrast is increased. These large firing rate transients seemed to reduce 
the accuracy of gain estimate ', but we observed that the predicted time courses still captured the overall 
asymmetries present in the underlying model. 
 During our behavioral recordings, we used a limited number of background noise scenes (n = 5) to reduce 
the overall size of the stimulus set. However, it became clear that our model required a larger sample of stimulus 
space to accurately estimate gain. To demonstrate this, we plotted the simulation results when neurons were 
exposed to 100 unique background scenes (Extended Data Figure 2i) compared to simulations where neurons 
were only exposed to 5 unique background scenes, as in our behavioral recordings (Extended Data Figure 2j). 
We observed that with 100 scenes, estimates of ' were very close to the true gain values, but were consistently 
underestimated in the case of 5 background scenes, even in the case of perfect gain control. Therefore, when 
analyzing our behavioral recordings, we used a standard linear-nonlinear model to estimate neural gain (Figure 
5), as we previously found that gain estimates from the GLM were highly correlated with gain estimated from the 
LN model (Figure 2i).
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Extended Data Table 1: Statistical Comparisons. 
 

Comparison Figure Center Spread N Test Statistic Effect Size p-value 
Behavior percent correct, low contrast: time 1 
vs. time 2  

2g 

T1: 0.68 
T2: 0.70 
(median) 

T1: 0.10 
T2: 0.15 
(IQR) 

21 mice 
Two-tailed Wilcoxon sign-rank test 
(FDR corrected94 for multiple 
comparisons) 

Z = -1.93 
Rank: 60 Z/√n = -0.42 0.054 

Behavior percent correct, low contrast: time 1 
vs. time 3 

T1: 0.68 
T3: 0.82 
(median) 

T1: 0.10 
T3: 0.092 
(IQR) 

Z = -4.01 
Rank: 0 Z/√n = -0.88 5.96e-5 

Behavior percent correct, low contrast: time 1 
vs. time 4 

T1: 0.68 
T4: 0.87 
(median) 

T1: 0.10 
T4: 0.190 
(IQR) 

Z = -4.01 
Rank: 0 Z/√n = -0.88 5.96e-5 

Behavior percent correct, low contrast: time 1 
vs. time 5 

T1: 0.68 
T5: 0.91 
(median) 

T1: 0.10 
T5: 0.11 
(IQR) 

Z = -4.01 
Rank: 0 Z/√n = -0.88 5.96e-5 

Behavior percent correct, high contrast: time 1 
vs. time 2 

T1: 0.82 
T2: 0.77 
(median) 

T1: 0.083 
T2: 0.19 
(IQR) 

Z = 2.84 
Rank: 181 Z/√n = 0.62 0.0045 

Behavior percent correct, high contrast: time 1 
vs. time 3 

T1: 0.82 
T3: 0.77 
(median) 

T1: 0.083 
T3: 0.14 
(IQR) 

Z = 2.17 
Rank: 163 Z/√n = 0.47 0.030 

Behavior percent correct, high contrast: time 1 
vs. time 4 

T1: 0.82 
T4: 0.78 
(median) 

T1: 0.083 
T4: 0.16 
(IQR) 

Z = 3.36 
Rank: 195 Z/√n = 0.73 7.80e-4 

Behavior percent correct, high contrast: time 1 
vs. time 5 

T1: 0.82 
T5: 0.79 
(median) 

T1: 0.083 
T5: 0.12 
(IQR) 

Z = 1.94 
Rank: 157 Z/√n = 0.42 0.052 

ANOVA for effects of pre-post muscimol 
application, contrast, and volume on firing rate 
in ACtx 

S4c n/a n/a 42 
neurons three-way ANOVA 

Fpre-post(1) = 812.54 
Fcontrast(1) = 22.64 
Fvolume(6) = 21.70 

η2 = 0.38 
η2 = 0.011 
η2 = 0.061 

4.48e-136 
2.19e06 
2.77e-24 

ANOVA for effects of pre-post saline 
application, contrast, and volume on firing rate 
in ACtx 

S4d n/a n/a 104 
neurons three-way ANOVA 

Fpre-post(1) = 15.40 
Fcontrast(1) = 0.43 
Fvolume(6) = 76.067 

η2 = 0.0046 
η2 = 1.29e-4 
η2 = 0.14 

8.89-5 
0.51 
1.76e-88 

Percent correct max dB SNR, low contrast: 
muscimol vs. saline 

3c 

Musc.: 0.10 
Saline: 0.85 
(median) 

Musc.: 0.67 
Saline: 0.27 
(IQR) 

10 musc. 
sessions, 
10 saline 
sessions 
(4 mice) 

Two-tailed Wilcoxon rank-sum test 

Z = -2.76 
Rank: 68 Z/√n = -0.62 0.0058 

Threshold (dB SNR), low contrast: muscimol 
vs. saline 

Musc.: 14.78 
Saline: 9.66 
(median) 

Musc.: 18.46 
Saline: 6.88 
(IQR) 

Z = 0.72 
Rank: 115 Z/√n = 0.16 0.47 

FA rate, low contrast: muscimol vs. saline 
Musc.: 0.026 
Saline: 0.132 
(median) 

Musc.: 0.10 
Saline: 0.85 
(IQR) 

Z = -2.91 
Rank: 66 Z/√n = -0.65 0.0036 

Max slope (PC/dB), low contrast: muscimol vs. 
saline 

Musc.: 0.026 
Saline: 0.072 
(median) 

Musc.: 0.056 
Saline: 0.030 
(IQR) 

Z: -2.68 
Rank: 69 Z/√n = -0.60 0.0073 

Percent correct max dB SNR, high contrast: 
muscimol vs. saline 

Musc.: 0.06 
Saline: 0.80 
(median) 

Musc.: 0.10 
Saline: 0.85 
(IQR) 

13 musc. 
sessions, 
10 saline 
sessions 
(4 mice) 

Z = -4.06 
Rank: 92 Z/√n = -0.83 4.96e-5 

Threshold (dB SNR), high contrast: muscimol 
vs. saline 

Musc.: 16.77 
Saline: 18.80 
(median) 

Musc.: 21.33 
Saline: 5.89 
(IQR) 

Z = -0.35 
Rank: 156 Z/√n = -0.071 0.73 

FA rate, low contrast: muscimol vs. saline 
Musc.: 0.027 
Saline: 0.213 
(median) 

Musc.: 0.10 
Saline: 0.85 
(IQR) 

Z = -3.19 
Rank: 107 Z/√n = -0.65 0.0014 

Max slope (PC/dB), high contrast: muscimol vs. 
saline 

Musc.: 0.012 
Saline: 0.058 

Musc.: 0.024 
Saline: 0.018 

Z = -3.77 
Rank: 97 Z/√n = -0.77 1.66e-4 
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(median) (IQR) 

Percent correct max dB SNR,  target in high 
contrast : muscimol vs. saline 

3f 

Musc.: 0.07 
Saline: 0.82 
(median) 

Musc.: 0.51 
Saline: 0.095 
(IQR) 

5 musc. 
sessions, 
5 saline 
sessions 
(2 mice) 

Two-tailed Wilcoxon rank-sum test 

Z = nan 
Rank: 15 Z/√n = nan 0.0079 

Percent correct at threshold, target in high 
contrast: muscimol vs. saline 

Musc.: 0.03 
Saline: 0.53 
(median) 

Musc.: 0.35 
Saline: 0.11 
(IQR) 

Z = nan 
Rank: 17 Z/√n = nan 0.032 

FA rate,  target in high contrast : muscimol vs. 
saline 

Musc.: 0.12 
Saline: 0.23 
(median) 

Musc.: 0.22 
Saline: 0.11 
(IQR) 

Z = nan 
Rank: 21 Z/√n = nan 0.22 

Max slope (PC/dB),  target in high contrast : 
muscimol vs. saline 

Musc.: 0.038 
Saline: 0.057 
(median) 

Musc.: 0.046 
Saline: 0.012 
(IQR) 

Z = nan 
Rank: 19 Z/√n = nan 0.095 

Percent correct max dB SNR, target in silence: 
muscimol vs. saline 

Musc.: 0.85 
Saline: 0.92 
(median) 

Musc.: 0.23 
Saline: 0.15 
(IQR) 

8 musc. 
sessions, 
8 saline 
sessions 
(2 mice) 

Z = nan 
Rank: 53 Z/√n = nan 0.13 

Percent correct at threshold,  target in silence : 
muscimol vs. saline 

Musc.: 0.11 
Saline: 0.22 
(median) 

Musc.: 0.28 
Saline: 0.22 
(IQR) 

Z = nan 
Rank: 55 Z/√n = nan 0.20 

FA rate,  target in silence : muscimol vs. saline 
Musc.: 0.029 
Saline: 0.041 
(median) 

Musc.: 0.038 
Saline: 0.11 
(IQR) 

Z = nan 
Rank: 60 Z/√n = nan 0.44 

Max slope (PC/dB),  target in silence : 
muscimol vs. saline 

Musc.: 0.028 
Saline: 0.031 
(median) 

Musc.: 0.015 
Saline: 
0.0048 
(IQR) 

Z = nan 
Rank: 63 Z/√n = nan 0.65 

Mixed-effects model: 
behavioral_threshold ~ 
neural_threshold + contrast + 
(contrast-1|mouse) 

5g 

Model Coefficients 
Estimate ± standard error 
[tstat(df), p-value] 

19 mice 

Likelihood ratio test against model 
without neural threshold: 
beh_thresh ~ contrast + 
(contrast-1|mouse) 

χ!(1) = 5.89  0.015 

Intercept: 0.23±1.21   
t(16)  = 0.19, p = 0.85 
 
Neural threshold: 0.48±0.18 
t(16) = 2.63, p = 0.018  
 
Contrast: 2.83±1.14 
t(16)= 2.48, p = 0.025 
 

Likelihood ratio test against model 
without contrast: 
beh_thresh ~ neur_thresh + 
(contrast-1|mouse) 

χ!(1) = 4.68  0.030 

Mixed-effects model: 
behavioral_slope ~ neural_slope + 
contrast + (contrast-1|mouse) 

5h 

Intercept: 0.023±0.0069   
t(16)  = 3.34, p = 0.0042 
 
Neural slope: 0.58±0.16 
t(16) = 3.58, p = 0.0025  
 
Contrast: 0.0096±0.0052 
t(16)= 1.85, p = 0.082 

 

Likelihood ratio test against model 
without neural slope: 
beh_thresh ~ contrast + 
(contrast-1|mouse) 

χ!(1) = 9.78  0.0018 

Likelihood ratio test against model 
without contrast: 
beh_slope ~ neur_slope + 
(contrast-1|mouse) 

χ!(1) = 3.10  0.078 
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Neural percent correct, low contrast: time 1 vs. 
time 2  

5i 

T1: 0.79 
T2: 0.83 
(median) 

T1: 0.15 
T2: 0.22 
(IQR) 

43 
sessions 

Two-tailed Wilcoxon sign-rank test 
(FDR corrected94 for multiple 
comparisons) 

Z = -1.12 
Rank: 418 &/√n = -0.17 0.26 

Neural percent correct, low contrast: time 1 vs. 
time 3 

T1: 0.79 
T3: 0.85 
(median) 

T1: 0.15 
T3: 0.15 
(IQR) 

Z = -3.61 
Rank: 198 &/√n = -0.56 0.00031 

Neural percent correct, low contrast: time 1 vs. 
time 4 

T1: 0.79 
T4: 0.92 
(median) 

T1: 0.15 
T4: 0.20 
(IQR) 

Z = -4.68 
Rank: 103 &/√n = -0.72 2.89e-6 

Neural percent correct, low contrast: time 1 vs. 
time 5 

T1: 0.79 
T5: 0.91 
(median) 

T1: 0.15 
T5: 0.16 
(IQR) 

Z = -5.34 
Rank: 31 &/√n = -0.82 9.44e-8 

Neural percent correct, high contrast: time 1 vs. 
time 2 

T1: 0.78 
T2: 0.74 
(median) 

T1: 0.15 
T2: 0.12 
(IQR) 

Z = 2.62 
Rank: 690 &/√n = 0.40 0.0088 

Neural percent correct, high contrast: time 1 vs. 
time 3 

T1: 0.78 
T3: 0.76 
(median) 

T1: 0.15 
T3: 0.13 
(IQR) 

Z = 1.45 
Rank: 593 &/√n = 0.22 0.15 

Neural percent correct, high contrast: time 1 vs. 
time 4 

T1: 0.78 
T4: 0.83 
(median) 

T1: 0.15 
T4: 0.20 
(IQR) 

Z = -0.24 
Rank: 453 &/√n = -0.037 0.81 

Neural percent correct, high contrast: time 1 vs. 
time 5 

T1: 0.78 
T5: 0.83 
(median) 

T1: 0.15 
T5: 0.16 
(IQR) 

Z = -2.00 
Rank: 307 &/√n = -0.31 0.045 

Mixed-effects model: 
threshold ~ gain_target + contrast + 
(contrast-1|mouse) 

6g 

Model Coefficients 
Estimate ± standard error 
[tstat(df), p-value] 

168 
sessions 

Likelihood ratio test against model 
without gain: 
threshold ~ contrast + 
(contrast-1|mouse) 

χ!(1) = 5.82  0.016 
Intercept: 10.97±1.33   
t(120)  = 8.27, p = 2.059e-13 
 
Target gain: -30.46±12.45 
t(120) = -2.45, p = 0.016  
 
Contrast: 3.27±1.55 
t(120)= 2.10, p = 0.038 
 

Likelihood ratio test against model 
without contrast: 
threshold ~ gain_target + 
(contrast-1|mouse) 

χ!(1) = 3.71  0.054 

Mixed-effects model: 
slope ~ gain_target + contrast + 
(contrast-1|mouse) 

6h 

Intercept: 0.039±0.0064   
t(120)  = 6.23, p = 7.14e-9 
 
Target gain: 0.16±0.060 
t(120) = 2.67, p = 0.0085  
 
Contrast: 0.0094±0.062 
t(120)= 1.52, p = 0.13 
 

168 
sessions 

Likelihood ratio test against model 
without gain: 
slope ~ contrast + 
(contrast-1|mouse) 

χ!(1) = 6.96  0.0083 

Likelihood ratio test against model 
without contrast: 
slope ~ gain_target + 
(contrast-1|mouse) 

χ!(1) = 2.28  0.13 

Mixed-effects model: 
thresh ~ gain_adapt + contrast + 
(contrast-1|mouse) 
 

S5m 

Intercept: 5.33±1.64   
t(120)  = 3.26, p = 0.0015 
 
Adaptation gain: 56.66±35.62 
t(120) = 1.59, p = 0.11  
 
Contrast: 2.77±1.92 
t(120)= 1.44, p = 0.15 
 

168 
sessions 

Likelihood ratio test against model 
without gain: 
thresh ~ contrast + 
(contrast-1|mouse) 

χ!(1) = 2.51  0.11 

Likelihood ratio test against model 
without contrast: 
thresh ~ gain_adapt + 
(contrast-1|mouse) 

χ!(1) = 2.020  0.16 
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Mixed-effects model: 
slope ~ gain_adapt + contrast + 
(contrast-1|mouse) 
 

S5n 

Intercept: 0.062±0.0078   
t(120)  = 7.98, p = 9.63e-13 
 
Adaptation gain: -0.14±0.17 
t(120) = -0.80, p = 0.43  
 
Contrast: 0.0049±0.0084 
t(120)= 0.58, p = 0.57 
 

168 
sessions 

Likelihood ratio test against model 
without gain: 
slope ~ contrast + 
(contrast-1|mouse) 

χ!(1) = 0.64  0.43 

Likelihood ratio test against model 
without contrast: 
slope ~ gain_adapt + 
(contrast-1|mouse) 

χ!(1) = 0.33  0.57 
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Extended Data Table 2: Mouse strains and genders. 
 

Experiment Figures Strain N [female, male] 
Acute ACtx recordings Figure 2 CDH23 1 [M] 

Behavior (no microdrive) Figure 3 C57BL/6 x CamKII-cre 1 [F], 4 [M] 

C57BL/6 x PV-cre 1 [F] 

CDH23 x SOM-cre 1 [F], 1 [M] 

Behavior (microdrive) Figure 3, Figure 5, Figure 6 CDH23 4 [F], 4 [M] 

C57BL/6 x PV-cre 1 [F] 

C57BL/6  x SOM-cre 1 [F] 

CDH23 x SOM-cre 1 [F], 2 [M] 

CDH23 x CamKII-cre 1 [F] 

Muscimol (behavior) Figure 4 CDH23 2 [F], 2 [M] 

Muscimol (acute recording) Supplemental Figure 4 CDH23 x CamKII-cre 1 [M] 

CDH23 1 [M] 

Acute ACtx recordings Supplemental Figure 5 CDH23 x SOM-cre 3 [F], 2 [M] 

CDH23 x PV-cre 1 [F], 1 [M] 

CDH23 x VGAT 2 [F] 

Total: 19 [F], 19 [M] 
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Extended Data Table 3: Target SNRs used during psychometric testing. 
 

Target Volumes 
[range] 

[n]: Mouse IDs n Sessions 
(total)  

n High-Low Contrast 
Sessions 

n Low-High Contrast 
Sessions 

0, 5, 10, 15, 20, 25 dB SNR 

[25] 

[12]: CA102, CA104, CA106, 

CA107, CA118, CA119, CA121, 

CA122, CA123, CA124, CA125, 

CA126 

214 111 103 

-5, 0, 5, 10, 15, 20 dB SNR 

[25] 

[8]: CA102, CA104, CA106, 

CA107, CA118, CA119, CA121, 

CA122 

31 31 0 

0, 4, 8, 12, 16, 20 dB SNR 

[20] 

[1]: CA046 1 0 1 

5, 8, 11, 14, 17, 20 dB SNR 

[15] 

[4]: CA118, CA119, CA121, 

CA122 

68 52 16 

8, 10.4, 12.8, 15.2, 17.6, 20 dB SNR 

[12] 

[15]: CA046, CA047, CA048, 

CA049, CA051, CA052, CA055, 

CA061, CA070, CA072, CA073, 

CA074, CA075, CA104, CA107 

111 0 111 

-4, 0, 4, 8, 12, 16 dB SNR 

[20] 

[11]: CA051, CA052, CA055, 

CA061, CA070, CA072, CA073, 

CA074, CA075, CA102, CA106 

91 91 0 

-5, -1, 3, 7, 11, 15 dB SNR 

[20] 

[5]: CA046, CA047, CA048, 

CA049, CA051 

19 19 0 

-75, -60, -45, -30, -15, 0 

dB attenuation rel. 25dB SNR 

[2]: CA124, CA125 20 n/a n/a 
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Extended Data Table 4: GLM Simulation Parameters 
 

Parameter Value 
µ 30 

σ!, σ" [1,3] 
β centroid * (frequency bin +, history bin ℎ) [20,2] 

β covariance matrix . /0.8 0.1
0.1 0.53 

β dimensions (4 ⋅ 6) [33, 12] 
Baseline rate 7 0.1 

Stimulus scaling 8 1 
Gain operating point 9 µ 

Gain control ξ [−1.0,−0.5,0,0.5,1.0] 

Adaptation time constants [τ!	τ"] >
?@AB − 47CD: 0.05 0.5
47CD − 47CD: 0.5 0.5
47CD − ?@AB: 0.5 0.05

F 

Simulated background scenes 100	AG	5 
Contrast history 6# 40 

B-spline degree, knots [3, 7] 
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Extended Data Figure 1 (related to Figure 1). Normative model responses, predictions, and example response 
distributions. 
 
a, The firing rate of the simulated neuron as a function of time. Traces shaded in blue or red indicate the firing rate to periods 
of low or high contrast background noise, respectively. The green trace indicates the model response to overlaid targets. b, 
The true contrast (labelled as variance) of the stimulus (blue, red, and dashed gray lines) along with the average model 
estimate of the contrast (solid black line) over time. c, Discriminability as a function of time and contrast, with the trace color 
indicating the contrast after the switch. The dashed vertical line indicates the time of the contrast switch. Open circles 
indicate time samples used to plot the distributions in d. d, Target (green) and background (blue or red) distributions as a 
function of time and contrast. The top row includes responses to targets and background in low contrast. Each column 
denotes a different time step relative to the change in contrast, as indicated by the column title. The bottom row is the same, 
but for high contrast. Arrows between c and d indicate distributions which yielded the indicated value of discriminability in 
the trace.  
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Extended Data Figure 2 (related to Figure 2). Simulation results to validate the GC-GLM. 
 
a, Schematic of simulated neurons in the forward model. Each neuron received broadband noise inputs which changed 
contrast every 2s (!!,#). A STRF modelled by a 2D-gaussian function with added noise filtered the stimulus to generate a 
linear response. This filter response was then modulated by a gain control function, which controlled the amount and time-
course of gain control based on the stimulus contrast. This gain modulated output was then exponentiated and stochastic 
spikes were generated using a Poisson process. b, Example STRF from one simulated neuron. Colorbar indicates STRF 
magnitude. c, Model estimate of the STRF averaged across 100 simulated neurons. d, Example linear drive for one 
simulated neuron over 500 trials (ie. the filter response of the STRF convolved with the stimulus). e, Each panel plots the 
average firing rates of 100 simulated neurons (solid teal lines) and corresponding GC-GLM fits (dashed black lines) when 
simulating perfect gain control (GC = 1.0). Each row corresponds to 100 simulations of different gain time courses, with the 
top row depicting a slow transition to low contrast, with a fast transition to high contrast. The middle row plots simulations 
were both transitions were fast. The bottom row plots simulations where the transition to low contrast was fast, with a slow 
transition to high contrast. The corresponding rows of panels f, g, and h, are the results of simulations with the same gain 
time courses.  f, Average gain time-course of the simulated neurons (solid teal lines) and the corresponding GC-GLM 
estimate of the gain, ", averaged over 100 simulations (black dashed lines). Insets of each panel depict the contrast kernels 
(dashed lines) and gain kernels (solid lines) estimated for each contrast. Blue lines indicate kernels after a switch to low 
contrast and red lines indicate kernels after a switch to high contrast. g, Average log firing rate for simulations with different 
gain time-courses and different degrees of gain control (GC value; the legend in the lower right indicates the color-GC value 
mapping). Each plotted line indicates the average firing rate/prediction for 100 simulations. h, Average gain time-course of 
all simulations (solid colored lines) and the average estimates of " (dashed gray lines). i, Simulations with 100 unique 
stimulus scenes, repeated 5 times each. Left panel plots the average firing rates and model fits. Right panel plots the true 
gain time-course (solid lines) and the average model gain estimate, " (dashed lines). The shaded areas indicate 2.5 and 
97.5 percentiles of the gain estimates. j, Simulations with 5 unique stimulus scenes, repeated 100 times each. Formatting 
as in i. For panels e-j, the GC value colors and line formatting are indicated in the legend on the bottom right. 
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Extended Data Figure 3 (related to Figure 3). Behavioral slopes are affected by the target volume range. 
 
a, The effect of contrast on the false alarm rates in psychometric sessions (n = 25 mice). Each dot and line represent a 
mouse, the blue and red bars indicate the mean false alarm rate for low and high contrast ±SEM. Results of a paired t-test 
(t(23) = -6.16, p = 2.75e-6) across contrast revealed a significantly higher false alarm rate in high contrast (Mean (M) = 0.22, 
standard deviation (std) = 0.080) compared to low contrast (M = 0.13, std = 0.054). b, Comparison of psychometric slopes 
across all mice (n = 25). Formatting as in a. Results of a paired t-test (t(23) = -1.51, p = 0.14) across contrast revealed no 
significant difference between the slopes. c, Average psychometric curves and percent correct for mice presented with a 
narrow range of targets (range = 15 dB SNR; Extended Data Table 3, row 4; dashed lines and open dots), and those 
presented with a wide range of targets (range = 25 dB SNR; Extended Data Table 3, row 1; solid lines and filled dots) in 
low contrast. Error bars indicate ±SEM. d, Psychometric slope for each mouse when low contrast targets were from narrow 
or wide target distributions. Each bar indicates the mean for each condition ±SEM. Results of an unpaired t-test (t(9) = 2.34, 
p = 0.044) indicated significantly larger slopes in response to narrow target distributions (M = 0.061, std  = 0.0060) compared 
to wide target distributions (M = 0.051, std = 0.0073). e, Average psychometric curves and percent correct for mice 
presented with a narrow range of targets (average of ranges = 12 and 15 dB SNR; Extended Data Table 3, rows 4 and 5; 
dashed lines and open dots) or wide range of targets (range = 25 dB SNR; Extended Data Table 3, row 1; solid lines and 
filled dots) in high contrast. f, Psychometric slope for each mouse when high contrast targets came from narrow or wide 
distributions. Formatting as in d. Results of an unpaired t-test (t(28) = 5.49, p = 7.29e-6) indicated a significantly larger 
slopes in response to narrow target distributions (M = 0.11, std = 0.033) compared to wide target distributions (M = 0.049, 
std = 0.017) in high contrast. In all plots: nsp>0.1; †p<0.1, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Extended Data Figure 4 (related to Figure 4). Confirmation of cortical inactivation with muscimol. 
 
a, Setup schematic for acute muscimol recordings in ACtx. b, Example spike rasters from two different neurons pre- and 
post-muscimol or saline application. On top of the raster is the timeline for each recording. Rasters are sorted by contrast 
and target volume, with color indicating low or high contrast backgrounds, color shade indicating target volume, and gray 
indicating background-only trials (-Inf). Left panel: spike raster of a representative neuron recorded prior to muscimol 
application, followed by the raster for the same neuron 30 minutes after muscimol application. Insets: Mean firing rate for 
each condition. Shade indicates target volume and the scale bar indicates the firing rate. Error bars are ±SEM across trials. 
Right panel: Example neuron before and after application of saline. Formatting as in left panels. c, Firing rates before and 
after muscimol application as a function of target volume and contrast. Dark dashed lines indicate spike rates recorded pre-
muscimol application and light dashed lines indicate the responses post-application. d, Firing rates before and after saline 
application. As in c, dark lines are responses recorded prior to saline application and light lines indicate responses recorded 
after saline application. In c and d, blue and red plots indicate responses during low contrast and high contrast, respectively, 
and the circles not connected by a line and labelled “-Inf” are responses to background alone. e, Area under the ROC curve 
(AUC) averaged across neurons after drug application in muscimol and saline recording sessions in low contrast. Filled 
circles and solid lines are responses after saline was applied while open circles and dashed lines are responses after 
muscimol was applied. Error bars indicate ±SEM across neurons. f, Same as e, but for high contrast. g, Lick probability 
over time during muscimol or saline sessions. Dashed vertical lines indicate trial onset (0 s) and the contrast switch (3 s). 
Green traces are muscimol sessions and black traces are saline sessions. The shading around each trace indicates ±SEM 
across sessions. h, Left: comparison of lick probability during the adaptation period. Right: comparison of lick probability 
during the target period. Each circle indicates a session and color is as in g. i, Cumulative probability of licking throughout 
the trial, normalized within muscimol or saline conditions to sum to 1. Colors as in g, h. Shading indicates ±SEM across 
sessions. In all plots: nsp>0.1; †p<0.1, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Extended Data Figure 5 (related to Figures 5 and 6). STRFs are unaffected by contrast, and the relationship between 
gain during adaptation periods in the trial and behavior. 
 
a, Neural against behavioral psychometric slopes for n = 6 mice presented with matched target volumes in high and low 
contrast. Formatting as in Figure 5g, except pink asterisk indicates a significant effect of slope measure and black asterisk 
indicates a significant effect of contrast determined using a two-way ANOVA. b, Example STRFs from one neuron estimated 
from each contrast period. Left: Low contrast STRF. The main plot depicts thresholded STRF values as a function of time 
and frequency. Inset is the original STRF, which has the same axes. Above the main plot is the temporal average across 
columns of the STRF, and to the right is the frequency average across rows. Right: High contrast STRF. Color bar indicates 
the color-mapping for both of the thresholded STRF plots. c, Average centered frequency (top) and temporal (bottom) STRF 
components for low and high contrast (red and blue traces, respectively) ±SEM across neurons. d, Histogram of correlations 
between low and high contrast STRFs for neurons with noise ratios (NR) below 100 (n = 129 neurons). Shaded bars indicate 
correlations that were not significantly different from chance, while unshaded bars indicate significant correlations, as 
determined by a permutation test. Inset: Proportions of the correlations in the population found not-significant (gray) and 
significant (white). e, Maximum STRF value across all pixels for low and high contrast, plotted for each neuron. Solid line 
indicates unity. The size of each circle indicates the NR of each neuron, with larger dots for smaller NR (see legend). 
Significance markers indicate the results of a Wilcoxon sign-rank test. f, Best frequency for each neuron in low and high 
contrast. Formatting as in e. g, Lag of the maximum STRF response for each neuron in low and high contrast. Formatting 
as in e and f. h, Correlation coefficients between the prediction of a linear-nonlinear model using STRFs estimated from the 
model without gain control (static-LN) versus a model with gain control (GC-LN). Each dot indicates a neuron. The red solid 
line indicates unity. The red “x” indicates the median correlation in each contrast. Asterisks indicate the significance of a 
Wilcoxon Sign-Rank test. i, Psychometric performance in low contrast, averaged based on a median split of average cortical 
gain during the adaptation period of the trial. Light dots and lines indicate the session average and psychometric fit to 
sessions in the bottom 50th percentile of gain, while dark dots and lines indicate the same values for sessions in the top 50th 
percentile of gain. Errorbars indicate ±SEM across sessions. Inset: distribution of average gain in each session estimated 
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from the adaptation period. The red dashed line indicates the median of the distribution, and the histogram bars are shaded 
according to whether they fall above (light blue) or below (dark blue) the median. j, Session-wise relationship between 
average gain in the adaptation period and psychometric threshold. Each dot indicates the gain and threshold for a single 
session, and its color indicates the contrast of the adaptation period. The gray line is the best linear fit to the data. The text 
in the lower right indicates the results of Likelihood Ratio Tests for models including gain as a predictor (in gray) or contrast 
as a predictor (in red). Full statistical results in Extended Data Table 1. Grey and black “ns” indicate that gain in the 
adaptation period and contrast, respectively, did not significantly predict psychometric slopes. k, Same as in j, but plotting 
psychometric slope as a function of gain. In all plots: nsp>0.1; †p<0.1, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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