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Abstract

Neural systems can be modeled as complex networks in which neural elements are repre-

sented as nodes linked to one another through structural or functional connections. The

resulting network can be analyzed using mathematical tools from network science and

graph theory to quantify the system’s topological organization and to better understand its

function. Here, we used two-photon calcium imaging to record spontaneous activity from

the same set of cells in mouse auditory cortex over the course of several weeks. We recon-

struct functional networks in which cells are linked to one another by edges weighted

according to the correlation of their fluorescence traces. We show that the networks exhibit

modular structure across multiple topological scales and that these multi-scale modules

unfold as part of a hierarchy. We also show that, on average, network architecture becomes

increasingly dissimilar over time, with similarity decaying monotonically with the distance (in

time) between sessions. Finally, we show that a small fraction of cells maintain strongly-cor-

related activity over multiple days, forming a stable temporal core surrounded by a fluctuat-

ing and variable periphery. Our work indicates a framework for studying spontaneous

activity measured by two-photon calcium imaging using computational methods and graphi-

cal models from network science. The methods are flexible and easily extended to addi-

tional datasets, opening the possibility of studying cellular level network organization of

neural systems and how that organization is modulated by stimuli or altered in models of

disease.
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Author summary

Neurons coordinate their activity with one another, forming networks that help support

adaptive, flexible behavior. Still, little is known about the organization of these networks

at the cellular scale and their stability over time. Here, we reconstruct networks from cal-

cium imaging data recorded in mouse primary auditory cortex. We show that these net-

works exhibit spatially constrained, hierarchical modular structure, which may facilitate

specialized information processing. However, we show that connection weights and mod-

ular structure are also variable over time, changing on a timescale of days and adopting

novel network configurations. Despite this, a small subset of neurons maintain their con-

nections to one another and preserve their modular organization across time, forming a

stable temporal core surrounded by a flexible periphery. These findings represent a con-

ceptual bridge linking network analyses of macroscale and cellular-level neuroimaging

data. They also represent a complementary approach to existing circuits- and systems-

based interrogation of nervous system function, opening the door for deeper and more

targeted analysis in the future.

Introduction

Distributed and often redundant coding is a hallmark of neural systems [1], providing robust-

ness to single-neuron variability [2] and supporting complexity in the system’s potential

behavioral repertoire [3]. A key challenge in understanding this code lies in determining how

the nature and strength of correlations between neurons is related to a stimulus [4]. Recent evi-

dence suggests that so-called noise correlations have marked and diverse functions [5], from

impacting information encoding and decoding [6–8], to tuning the amount of information

present and thus the nature of ensuing cortical representations [9–12]. Correlations in spike

trains have also been noted to contain important information about excitability, latency, and

synchronization [13–15]. Even apart from task-evoked activity, spontaneous activity and cor-

relations of that activity can profoundly impact cortical responses to a sensory input, thereby

playing a critical role in information processing [16, 17].

To better understand the nature of coherent multi-unit interactions both during intrinsic

and stimulus-induced processing, it is necessary to have a language in which to study inter-

unit interaction patterns. In related work in other species and other spatial scales, network sci-

ence has proven its utility as just such a candidate language [18]. The notion of a network in its

simplest form is akin to the notion of a graph in the field of mathematics known as graph the-

ory [19]. Specifically, an undirected binary graph is composed of nodes, which represent the

units of the system, and edges, which link pairs of nodes according to some physical connec-

tion, functional relation, or shared feature [20]. This simplest version of a network can also be

expanded to include weights on edges, weights on nodes, dynamics on edges, dynamics on

nodes, or multiple types of nodes or edges forming a multilayer or multiplex structure [21, 22].

By either the simple or expanded encoding, network models of neural systems seek to distill

the most salient organizational features of the system, allowing investigations to focus on how

the network topology constrains or supports the system’s function [23]. Importantly, the net-

work modeling approach is flexible in the sense that its components can be redefined at differ-

ent spatial scales, and is thus equally applicable to cellular data at the microscale as it is to

regional data at the large scale [24].

Recent studies have begun to build and characterize network models of cellular activity as

measured by calcium imaging [25–31], and have demonstrated their biological relevance
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across a neural system’s development [32]. For example, one notable study provided initial evi-

dence that immature cells in the developing brain display spontaneous correlation patterns

that are characterized by small-world architecture and that critically regulate neural progenitor

proliferation [33]. In a mature system (ferret visual cortex), recent evidence suggests that local

connections in early cortical circuits can generate structured long-range network correlations

that guide the formation of visually evoked distributed functional networks that display strik-

ing network modularity [34]. The architecture of correlations in spontaneous activity can be

regulated by synaptotagmin [35], modulated by acetylcholine [27], blocked by glutamatergic

antagonists [36], and mediated by a combination of intrinsic and circuit mechanisms [36].

Yet, little is known about the conservation or variation of network architecture in spontaneous

correlations across different regions of the brain. Moreover, while the activity can be tempo-

rally quite precise in a given instance [36], little is known about how patterns of spontaneous

activity change over the course of days and weeks after the critical period of development has

passed. Understanding the principles of these dynamics is important for understanding the

conserved rules that the architecture must obey, as well as the variability that can be exercised

to meet the demands of the ever changing internal or external environments.

Here, we take steps to address some of these gaps in knowledge by measuring correlated

spontaneous neuronal activity using two-photon calcium imaging, modeling those correlation

patterns as networks, and assessing network architecture and dynamics over the course of sev-

eral weeks. We focus our measurements specifically on mouse auditory cortex because of its

rich organizational characteristics, with distributed representations of tone frequency [37],

spatially overlapping locations for the representations of pitch and timbre [38], and the capac-

ity for single neurons within the wider network to encode simultaneous stimuli by switching

between activity patterns [39]. We choose mouse as our species of interest largely to prepare

for future efforts using two-photon optogenetics [40] to perturb the network architecture, with

the goal of probing network response to stimulation and validating recently posited theories of

network control [41–43]. We begin by testing the hypothesis that networks reconstructed

from fluorescence correlations exhibit hierarchical modular structure, and that network mod-

ules fluctuate over the timescales of days or weeks. We also test the hypothesis that some units

participate in these temporal fluctuations more than others such that the system is best charac-

terized by the existence of a stable temporal core surrounded by a fluctuating and variable

periphery. Each of these hypotheses is motivated by prior observations in non-invasive imag-

ing data acquired from humans [44–46], where evidence points to the importance of hierarchi-

cal modularity and temporal core-periphery structure for effective cognitive function [18, 45,

47–49]. Thus, collectively our hypotheses are predicated on the notion that neural systems are

constrained to display some degree of preservation in network architecture across species,

from human to mouse [43, 50, 51], as well as scale invariance, from the level of large-scale

areas to the level of small-scale units [52–54].

Results

We recorded spontaneous activity from four awake, head-fixed mice over the course of 5, 5, 6,

and 7 sessions spanning between 2 and 4 weeks. Specifically, we used two-photon microscopy

to detect changes in fluorescence of GCaMP6s in transfected neurons caused by fluctuations

in calcium activity. We estimated functional connectivity from the fluorescence traces using a

cross-correlation of differenced activity for every pair of cells. We note that our analysis was

carried out on continuous calcium traces rather than sparse spike trains, which can be

obtained using deconvolution methods. We modeled the cell-to-cell correlation matrix as a

network [23], and quantitatively characterized the network’s architecture using well-developed
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tools from network science [19]. Specifically, we assessed the modularity of the network struc-

ture using a commonly applied community detection technique known as modularity maximi-

zation [55–57]. Further, we assessed temporal fluctuations in this modular structure using

tools for the analysis of dynamic graphs [21, 58, 59]. For further details on our methodological

approach, see Materials and methods.

Networks exhibit multi-scale modular structure

One of the most important organizational principles of biological neural networks is their

organization into cohesive modules [45]. These modules are thought to support specialized

information processing while conferring robustness to perturbations. Moreover, converging

evidence from micro- and macro-scale network analyses suggest that network modules are

also organized hierarchically, with larger modules subtending broader brain function and

smaller modules playing more specialized roles [24, 60, 61]. In this section, we test the hypoth-

esis that networks reconstructed from fluorescence correlations in mouse auditory cortex

exhibit hierarchically modular structure.

To address this hypothesis, we leverage recent advances in community detection methods
[62]—a collection of algorithms and heuristics that use data-driven approaches to uncover the

modular structure of networks. Specifically, we use an extension of the popular modularity
maximization algorithm [55]. The standard version of this algorithm defines a module as a

group of network nodes whose internal density of connections is maximally greater than what

would be expected under a chance model. The extension of this algorithm samples modules

over multiple organization scales, ranging from coarse divisions of the network into a few

large modules to finer divisions of the network into many small modules. Importantly, unlike

past applications, this extension also includes built-in null statistical testing capable of rejecting

modular structure at different levels of the proposed hierarchy if they were consistent with a

null model.

Here, we applied this approach to investigate the hierarchically modular structure of net-

works derived from correlated fluorescence traces (Fig 1a). The module detection method was

applied separately to networks constructed from data in each recording session, which allowed

us to take full advantage of all cells recorded on a given day. The algorithm resulted in a hierar-

chy of communities that passed statistical testing for significance (p< 0.05; Fig 1b–1f). In gen-

eral, we found that the fluorescence networks exhibited hierarchical, multi-scale modular

structure. Of the 43 recordings (aggregated across all mice) we observed statistically significant

hierarchies in all. Across recording sessions, the average number of scales in a hierarchy was

19 (inter-quartile range of [10.25, 27.75]; Fig 1c).

Additionally, we also computed spatial statistics for each module. Past studies have shown

that communities tend to be spatially co-localized, so that other cells located near one another

are more likely to belong to the same module compared to cells located far from one another

[63]. To test whether this was also the case in our data, we computed the Euclidean distance

from each cell to the nearest cell assigned to the same community. We then averaged this mea-

sure over all nodes in the same module. If cells were arranged in spatially dense, compact mod-

ules, then this measure would be small. Here, we calculated this measure for each module at

every level of the hierarchy and compared these values against a null distribution generated by

randomly and uniformly permuting the cell’s spatial locations but preserving their module

assignments. For each module, we expressed the mean nearest-neighbor distance as a z-score

with respect to this distribution. We found that the observed modules tended to be more spa-

tially compact than expected by chance. For each mouse, the median z-score was less than zero

and in all cases the inter-quartile range of z-scores excluded a value of zero (Fig 1g, 1h, 1i and 1j),
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indicating that the observed modules tended to be more spatially compact than expected by

chance.

Lastly, we asked whether a module’s spatial features varied as a function of where it

appeared in the hierarchy. To address this question, we aggregated z-scored nearest neighbor

distance for each module along with modules’ hierarchical levels. A hierarchical level of 1 indi-

cates large communities comprised of many nodes, while the deeper hierarchical levels refer to

divisions of the network into smaller communities. Then, separately for each mouse, we com-

puted the correlation of z-scored nearest neighbor distance with hierarchical level. We found

negative association in three of the four mice, suggesting that deeper hierarchical levels, i.e.

Fig 1. Detection of hierarchical modular structure. (a) Mean fluorescence of pixels, averaged over the full recording session. (b) Co-

classification matrix generated using all statistically significant hierarchical levels. The dendrogram to the right depicts module splits. (c) The

number of hierarchical levels aggregating data from all mice and all recording sessions. Panels (d), (e), and (f) depict module assignments at

different levels of the hierarchy. The network diagrams shown in these panels are identical to one another and represent binarized matrices

obtained by thresholding the jitter-adjusted correlation matrix of fluorescence traces between pairs of cells. Panels (g), (h), (i), and (j) depict

distributions of z-scored mean intra-module Euclidean distance for each module and for each mouse. Panels (b), (d), (e), and (f) depict

representative results from mouse 1. Here, the acronyms “IQR” and “Med.” represent interquartile range and median, respectively. Note also

that nodes in panels b and d-f are ordered according to their hierarchical community assignments.

https://doi.org/10.1371/journal.pcbi.1007360.g001
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smaller communities, may be more spatially contiguous than larger communities. The Spear-

man correlation of hierarchical level and nearest neighbor distance was ρ = −0.22, −0.19,

+0.01, and −0.27 for the four mice.

Network and module similarity decays over time

In the previous section we demonstrated that the correlation pattern of fluorescence traces

exhibits modular structure across multiple scales, and that these multi-scale modules unfold as

part of a hierarchy. In these analyses, the network’s modular structure was derived separately

for each recording session. While this approach allowed us to characterize the modular struc-

ture on a given day, it tells us little about how those modules fluctuate over the timescales of

days or weeks. Here, we address this question directly, taking advantage of the longitudinal

tracking of cells across multiple recording sessions to assess the temporal consistency of the

network’s overall organization, as reflected in the full correlation matrix, and in the network’s

mesoscale organization, as reflected in its modular structure.

We begin by calculating the similarity between the correlation structure for any two record-

ing sessions, u and v (Fig 2a). We first identified the set of cells from which fluorescence traces

were recorded in both sessions. The average number of cells observed in any pair of recording

sessions was 193.0±15.6 (Mouse 1), 132.7 ± 40.8 (Mouse 2), 121.7 ± 20.0 (Mouse 3), and

107.0 ± 35.6 (Mouse 4). We then extracted the correlation structure among those subsets of

cells for each of the two recording sessions, resulting in two correlation matrices: Wu and Wv.

Next, we vectorized the upper triangles of both matrices and computed the correlation of their

elements, ruv. Finally, we expressed this correlation as a z-score, zWuv , with respect to a null dis-

tribution generated by randomly and uniformly permuting rows and columns of Wu and

recomputing the correlation of Wperm
u with Wu (essentially the Mantel test [64]). Accordingly,

large positive z-scores indicate that the correlation of ruv was much greater than expected in

the non-parametric permutation-based null model. Aggregating z-scores across all pairs of

recording sessions resulted in the z-scored similarity matrix, ZW ¼ ½zWuv �.
To assess the degree to which the similarity in correlation structure depended upon the

time interval that separated the recordings, we also computed the distance matrix D = [duv],
which measures the distance (in number of days) between recording sessions u and v. We

then compared the upper triangular elements of ZW with the corresponding elements of D.

In general, we observed that zWuv decayed monotonically as a function of duv. Notably, this

observation was consistent across all mice (mean±standard deviation Pearson correlation of

rzWuv ;duv ¼ � 0:50� 0:13) (Fig 2b–2e). These findings indicate that the magnitude with which

individual cells are correlated with one another over time varies systematically over recording

sessions. Specifically, the correlation structures of recording sessions separated by a short

period of time tend to be similar to one another, whereas those separated by longer periods of

time tend to be dissimilar.

In addition to assessing whether cell-to-cell correlation patterns varied across recording ses-

sions, we also aimed to assess the variability of modular structure. To address this question, we

performed an analogous procedure to the one described above where we substitute the module

co-assignment matrices Cu = [Ciju] and Cv = [Cijv] for the correlation matrices, Wu and Wv.

Here, the element Ciju indicates the fraction of all detected community partitions in which

cells i and j were co-assigned to the same module. Otherwise, this procedure for relating the

modular structure of networks from different recording sessions proceeded exactly as

described above. We denote the z-score matrix from the module comparison as ZC ¼ ½zCij �. As

before, we observed that the correlation of similarity in modular structure decays with time

(mean±standard deviation Pearson correlation of rzWuv ;duv ¼ � 0:51� 0:17), indicating the
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presence of marked quotidian variation (Fig 2f–2i). We also repeated this analysis after divid-

ing communities into terciles according to their hierarchical level to assess whether there was a

relationship between hierarchy and module stability. We found evidence of decaying similarity

at all levels, but no clear dependence on hierarchy (S1 Fig).

Temporal core-periphery structure

In the previous section we demonstrated that, on average, hierarchical modular structure

becomes increasingly dissimilar over time. However, it may be the case that some sets of brain

areas maintain their modular structure despite the passage of time, forming a stable temporal

core surrounded by a fluctuating and variable periphery [44]. To test this hypothesis, we

Fig 2. Reconfiguration of correlation structure over time. (a) Analysis pipeline for comparing correlation structure. For any two correlation

matrices, Wu and Wv, whose elements have been z-scored against those obtained under a “jittered” null model in which random offsets were

added to timeseries (see Methods), we vectorize the upper triangular elements and compute their similarity using a Pearson correlation

coefficient. We compare the observed correlation coefficient against that which we would expect under a null model in which rows and columns

of Wu are permuted uniformly at random. In panels (b), (c), (d), and (e), we show the scatterplots of standardized similarity scores for pairs of

correlation matrices with the number of days separating their respective recording sessions. In panels (f), (g), (h), and (i), each point represents

the standardized similarity scores of module co-assignment matrices across pairs of recording sessions.

https://doi.org/10.1371/journal.pcbi.1007360.g002

Stability of spontaneous, correlated activity in mouse auditory cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007360 December 9, 2019 7 / 25

https://doi.org/10.1371/journal.pcbi.1007360.g002
https://doi.org/10.1371/journal.pcbi.1007360


focused on sequences of recording sessions and characterized the stability of modules across

those sessions.

Because the number of recording sessions varied from one mouse to another, we focused

on sequences of five recording sessions (the greatest number that was available for all mice).

For each mouse, we modeled the thresholded connectivity data from each of these five record-

ing sessions as the layers in a multi-layer network object [22, 65], and we used multi-layer

modularity maximization [66] to track the fluctuations in modular structure across those five

sessions (Fig 3a; see Materials and methods for more details). The multi-layer modularity max-

imization approach extends the traditional modularity maximization approach [55] by incor-

porating networks from all five sessions into a singular multi-layer network object, and then

detecting modules in all layers simultaneously. The main advantage of this procedure is that

the same set of module assignments are preserved across all layers, making it possible to track

the formation and dissolution of modules over time and to seamlessly compare modules from

one recording session to the next. Given such a mapping, one can then calculate measures like

the local “network flexibility” [44, 67], which indicates how frequently a given node changes its

module assignment across layers. Past studies have used this flexibility measure to identify

temporally stable cores and variable peripheries (clusters of nodes with low and high flexibility,

respectively) [44]. The multi-layer modularity maximization procedure required that we main-

tain a consistent set of nodes across layers, i.e. a fixed set of cells that were observed on all
recording sessions. This conjunction results in a smaller set of cells than the pairwise compari-

sons utilized in the previous section. The number of cells retained for the multi-layer analysis

was 144 (Mouse 1), 68 (Mouse 2), 67 (Mouse 3), and 54 (Mouse 4).

Obtaining estimates of network flexibility requires the detection of communities using

multi-layer modularity maximization, which depends upon two parameters, γ and ω. These

parameters control the resolution (size and number) of modules detected and their stability

across layers, respectively. Here, we use a recently developed procedure that allows us to obtain

a representative sample from the parameter space defined by these two variables [68]. For each

such sample, we calculated a local (node-level) measure of flexibility, ranked the flexibility

scores of all nodes, and subsequently averaged these ranked flexibility scores across all samples

to generate an average flexibility profile for the population of cells. We note that each layer in

this model represents the structure of a network estimated during different recording sessions.

The multi-layer model makes it possible to aggregate these different networks into a single

mathematical object rather than treating them as independent and disjoint estimates of the

network [69]. This framework has been used widely in network neuroscience for modeling

nervous systems whose network structure evolves over time [70, 71], differs across individuals

[68], and spans multiple association modalities [72, 73].

In addition to the flexibility approach, we also used a second method to provide converging

evidence of temporal core-periphery structure (Fig 3a) [74]. In this procedure, we calculated

the session-averaged connectivity matrix (over the five recording sessions), and based on its

organization we algorithmically assign cells (nodes) to a continuously defined core and periph-

ery (see Materials and methods for more details). Intuitively, core nodes are nodes that main-

tain strong connections to one another and to the periphery across recording sessions, while

peripheral nodes are those whose connections are variable (e.g., observed in only a few record-

ing sessions or absent altogether). The size of the core and the smoothness of the transition

from core to periphery are controlled by two free parameters, α and β. We systematically

explored this parameter space and at each point, we fit the core-periphery model to the ses-

sion-averaged network to calculated the core quality [74]. We compare the quality of cores fit

to the observed session-averaged matrix against the qualities fit to random matrices generated

by a permutation-based null model. This comparison allows us to identify points of interest in
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007360 December 9, 2019 8 / 25

https://doi.org/10.1371/journal.pcbi.1007360


Fig 3. Estimation of core-periphery structure and network flexibility. (a) Thresholded correlation matrices are separately treated as: a) layers

in a multi-layer network, their communities estimated, and network flexibility estimated as the frequency with which a node changes its

community assignment across layers; b) the consistency matrix is submitted to a core-periphery detection algorithm and each node’s “coreness”

is estimated. Here, consistency measures the fraction of layers (recording sessions) in which a connection was present. (b) Node’s flexibility

scores plotted in anatomical space. (c) Nodes’ “coreness” plotted in anatomical space. The size of nodes in panels b and c is proportional to their

average weight across all five recording sessions. (d) Because flexibility is a measure of variability while “coreness” is a measure of stability, we

find that the two are inversely correlated with one another (red line represents the identity line). (e) Cross-subject consistency of optimal

parameters for fitting the core-periphery model. For each mouse, we calculated the difference between observed core quality and that of a null

model, and we retained the top 10% of those points. These points are depicted at the level of individual mice in panel f. In panel e, we aggregate

those values across all mice.

https://doi.org/10.1371/journal.pcbi.1007360.g003
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the parameter space: points where the observed core was of greater quality than that of the null

model.

We note that, here, we focus on temporal core-periphery structure, where the core is com-

prised of nodes that maintain their connection to one another over time and the periphery is

made up of nodes whose connections to one another are variable or infrequent [44]. This defi-

nition is distinct from core-periphery structure defined based on topological features alone

[75, 76]. In the case of topological core-periphery structure, the core represents a strongly con-

nected cluster of nodes that is weakly connected to a set of peripheral nodes. The peripheral

nodes make few connections to one another.

In general, we found evidence that cortical activity in all mice exhibited temporally-stable

cores of nodes that maintained community assignments and connectivity over many days. In

general, the flexibility measure converged with the coreness measure, implicating roughly the

same sets of nodes as temporally stable (i.e., manifesting high coreness, low flexibility) (Fig 3b–

3d). Across mice, cores tended to be fairly exclusive (Fig 3e and 3f); core quality was maximally

greater than the null model at points in parameter space corresponding to a small subset of

cells. At these points in parameter space and across all mice, we found the average core

included� 20% of all nodes, an estimate that is obtained after thresholding the sigmoidal core-

ness measure at its midpoint. We note, however, that as a result of parametric variation we

observed cores containing as few as 0.09% of all nodes and as many as 31.6% of nodes. The

smoothness of the transition between core and periphery was more variable, suggesting that

these networks may exhibit multiple cores with different degrees of smoothness separating the

core from the periphery.

The detection of temporal core-periphery structure suggests that there exists a small subset

of nodes whose modular organization is preserved across time. To test whether this was the

case, we repeated the procedure from the previous section, wherein we calculated the similarity

of cell-to-cell correlations across multiple days. Here, we calculated the similarity of connec-

tions among core nodes (the top 10% ranked by coreness) and connections among non-core

nodes. If the core were indeed stable, we would expect that the connections within the core

would be more stable across time compared to the connections within the non-core. Indeed,

we found that this was the case. For mice 1–4, we found that the similarity of connections

among core nodes were −0.26, +0.92, −0.16 and +0.06, compared to connections involving the

non-core nodes, which were −0.29, −0.52, −0.33, −0.76. On average, the difference in correla-

tion between core and non-core was 0.41±0.38. This observation suggests that the core nodes

are more temporally stable than the periphery nodes, both in terms of their community struc-

ture and in terms of their connectivity patterns.

Discussion

Spontaneous fluctuations in neural activity at the cellular scale can modulate behavioral

responses to incoming sensory stimuli [16, 17]. Yet the nature of that modulation is not well

understood, in part due to the fact that such spontaneous activity does not appear to be ran-

dom in nature, but instead displays heterogeneous dependencies or correlations among units.

Little is known about the rules constraining the architecture of these correlations, or their vari-

ability over time. Here we sought to partially address this gap in knowledge by using recently

developed techniques in network science to examine the network architecture of correlations

in spontaneous activity in mouse auditory cortex as measured by two-photon microscopy and

calcium imaging over the course of several weeks. We found that networks exhibited striking

modular architecture, with smaller modules being located within larger modules in a multi-

scale hierarchy. We also found significant temporal rearrangement of modular architecture, as
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indicated by the fact that the similarity in modules decreased monotonically as a function of

the time interval between recording sessions, even when only considering those units that

were present in both sessions. Finally, we found that the broadly observed temporal rearrange-

ment of modules was complemented by the presence of a small number of cells whose modular

allegiance remained stable throughout the 2–4 weeks of experimentation. We confirmed with

additional testing that the co-existence of stable and unstable units was consistent with a tem-

poral core-periphery model of system dynamics, where a stable core of units is accompanied

by a flexibly periphery.

Multi-scale modular network structure

Biological systems generally and neural systems specifically, are frequently required to develop,

adapt, and evolve in changing environments [77, 78]. This pervasive demand for adaptation is

thought to be a partial explanation for the striking modular structure observed in biological

systems [79, 80]. Each module is thought to have the capacity to change or adapt without

adversely impacting the function of other modules. In neural systems, modules are thought to

exist in order to segregate specific cognitive function or computations, allowing enhanced spe-

cialization of the organism [45, 81]. Such modular structure has also been observed in sponta-

neous recordings of intact zebrafish larvae, where topographically compact assemblies of

functionally similar neurons reflect the tectal retinotopic map despite being independent of

retinal drive [82, 83]. These data suggest that spontaneous activity displays modular structure

that is a functional adaptation specifically tuned to support the system’s behavior. Similar

observations have also recently been made in ferret visual cortex, where widespread modular

correlation patterns in spontaneous activity accurately predict the local structure of visually

evoked orientation columns several millimeters away [34].

Hierarchical modularity in biological systems is further thought to allow for a decompos-

ability of the system’s temporal responses to the environment, with fast processes occurring in

small modules at a low level of the hierarchy and slow processes occurring in large modules at

a high level of the hierarchy [84]. Prior work at the large-scale has demonstrated the presence

of hierarchically modular structure in neural systems specifically, and suggested that large

modules support broad cognitive functions while small modules support specialized cognitive

functions [24, 60, 61, 85]. Here we extend these prior observations by showing that over short

time periods approximately equal to the duration of a recording session, neurons assemble

into cohesive modules of varying size, ranging from large, spatially-distributed clusters of

weakly coupled neurons to compact, highly correlated ensembles. In theoretical work, it is

interesting to note that hierarchical modularity provides an efficient solution to the problem of

evolving adaptable systems while minimizing the cost of connections [86]. This relation

between hierarchical modularity and low cost yet efficient information processing in neural

systems has also been supported by both theoretical work and analysis of neural data in both

C. elegans and human [85]. When considering our results in this light, it is useful to note that

the spatial compactedness of modules suggests that maintaining long-distance correlated activ-

ity may be metabolically costly and therefore uncommon. Overall, these findings are consistent

with those observed in other micro- and macro-scale networks and suggest that the organiza-

tional principles of modular architecture and spatially-compact, low-cost clusters may be con-

served across spatial scales [45, 87].

Daily variation in network architecture and module constituency

Accompanying the nascent use of tools from network science to understand interaction or

connection patterns between neural units, there has been a marked interest in understanding
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the dynamics of interaction patterns as a function of time, and across a variety of different

time scales [21, 58, 88, 89]. Particularly in the human imaging literature, efforts have begun to

understand principles of dynamic network reconfiguration on the time scale of minutes or

hours [70, 90], days [91, 92], weeks [93], months [46, 94], and years [95, 96]. Here we exercise

that interest in the domain of network models of correlation matrices derived from spontane-

ous activity in mouse auditory cortex over 2 to 4 weeks of experimentation. Our findings sug-

gest that quotidian variation in correlation structure is manifest at multiple scales: (i) at the

level of cell-to-cell correlations, but also (ii) at the level of large-scale and module patterns in

the network. This latter observation is particularly interesting to consider in light of findings at

the macro-scale level of whole-brain networks derived from fMRI data. Specifically, at this

large scale, much of the modular organization of spontaneous correlations in the human brain

is conserved across the time scales of days and weeks, with notable flexibility largely present at

module boundaries. One could speculate that gross temporal stability in macro-scale networks

is underpinned by notable micro-scale variability. It would be interesting in future to more

directly address the question of the functional role of this micro-scale network reconfiguration,

and specifically to test the hypothesis that the correlation structure of fluorescence traces in

mouse primary auditory cortex is reorganized over timescales of days to weeks to support cor-

tical functional reorganization.

A stable network core accompanied by a flexible network periphery

In other natural dynamical systems, it has been noted that density tends to support temporal

stability, while sparsity tends to support temporal instability [97]. In the context of networked

systems, the notion can be expanded to describe the phenomenon in which a core of densely

interconnected units tends to display weak or slow temporal fluctuations, while a periphery of

sparsely interconnected units tends to display strong or fast temporal fluctuations [44]. In the

context of the human brain, this temporal core-periphery structure has been raised as a model

for the balanced constraints of task-general processes, implemented by the temporal core, and

task-specific processes, implemented by the temporal periphery [98]. It is interesting to con-

sider whether such a delineation into temporal core and periphery is also characteristic of cel-

lular networks, and whether that separation is functionally meaningful in a similar sense. Our

findings suggest that, while calcium fluorescence correlation structure changes markedly over

time, there remains a relatively small set of cells whose interactions, both as single connections

but also as communities, are spared and preserved. There is some evidence in theoretical stud-

ies that such core-like structures emerge early in development, and are strengthened through

functional activation [99]. In analyses of macro-scale networks, core stability and peripheral

flexibility have been associated with learning [44], leading us to speculate that the emergence

of core-periphery structure in micro-scale networks may serve a similar role in preserving

learned (auditory) relationships, while maintaining enough variability to learn and map novel

stimuli. Thus, future work could be directed to investigate the functional roles of cores and

peripheries during task conditions.

Our observations are not without precedent and are in line with other previous cellular-

level studies. For instance, in a study of Tritonia motor programs, [100] found that in addition

to a “core” set of neurons that consistently responded to stimulation, the motor network

expanded to include a peripheral set of neurons whose membership varied across trials. The

authors went on to show that the variable set of neurons included those that were strongly cou-

pled to the network at rest, suggesting that spontaneous coupling patterns predispose cells to

be recruited into the motor program. Similarly, [101] distinguished between sets of cells as

“soloists” and “choristers,” which respectively comprise those whose activity was distinct from
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that of the rest of the population and those whose activity was consistent with that of the bulk

of the population. Our finding of temporal core-periphery structure echoes both of these stud-

ies. In our study, however, we find analogous cores whose community affinity is preserved

over days. Although the functional relevance of the core-periphery structure reported here

remains unclear, large-scale studies of brain networks have linked reorganization of these

types of structures to learning [44]. Outside of neuroscience, cores are thought to represent

polyfunctional units in a network, positioned where modules overlap with one another [102],

and to occupy positions of influence within the broader topology [103]. Future studies could

better disambiguate the functional role of temporal core-periphery structure by linking those

types of structures to behavior.

Methodological considerations and limitations

There are several methodological considerations and limitations that are pertinent to the inter-

pretation and generalizability of our results. First, we note that the experimental methods

allow us to sample only a subset of neurons within a specific “slice” of the auditory cortex. It is

likely that most of the neurons that directly target the neurons that we image are not captured

by the analysis. Therefore, the estimates for the network connectivity should not be taken as an

approximation for the actual physical connectivity in the cortical circuit. Another important

aspect of data collection is that we focus on a specific cortical layer: layer 2/3. Neurons in the

cortex differ tremendously in their connectivity patterns across different layers [104, 105]. It

would be important in future studies to sample the activity across cortical depth to better

understand integration of information across cortex.

Second, we note that we have examined correlations in spontaneous activity fluorescence

traces, and this approach has the strengths of computational simplicity and ease of interpre-

tation [106]. However, we acknowledge that correlation-based approaches focus on pairwise

functional interactions, and remaining agnostic to underlying structural connectivity as

well as to higher-order (non-pairwise) relations between units. It would be interesting

in future to consider maximum entropy models as an alternative method to estimate con-

nections between units [107], both for its sensitivity to underlying structure [108], and for

its ability to assess higher-order interactions [109]. Approaches that could then take advan-

tage of the richer assessment of higher order interactions in these data include emerging

tools from algebraic topology [110, 111], which have already proven relevant for under-

standing structure-function relationships at both large and small scales in neural systems

[112, 113].

Finally, an additional limitation concerns the measures used to establish the presence or

absence of connections between cells. Specifically, we constructed networks where nodes rep-

resented individual cells and where edges represented the correlation magnitude of fluores-

cence traces. Importantly, correlated activity is not a direct proxy for underlying structural

connectivity [114], and thus a pair of neurons that may not be directly synaptically connected

can exhibit correlated activity; rather than reflecting structural connections, functional con-

nectivity provides information about the interactions between neurons due to their function

[18]. Moreover, correlated activity also does not represent the coupling matrix that prescribes

the temporal evolution of brain activity [115]. Rather, the correlation structure of neural activ-

ity represents the product of a dynamical system whose evolution is constrained by structural

connections. Though correlated activity at the large-scale has proven useful for investigating

the functional organization of brain networks [30, 116, 117], its utility for understanding and

characterizing the structure and function of micro-scale networks remains unclear and largely

untested [118]. Future studies should both investigate in greater detail the relative advantages
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of alternative, domain-specific measures of functional connectivity [119, 120] and the relation-

ship of these measures to other connection modalities [121].

A related limitation concerns the properties of network connections or edges. Here, we

used fully weighted and signed representations to calculate network similarity (see Fig 2) and

sparse, binary networks to detect modules and core-periphery structure (See Figs 1 and 3). We

adopted these particular edge definitions because they allowed us to compute similarity using

the full distribution of edge weights and to avoid making future, somewhat arbitrary, decisions

about the appropriate null model for weighted and signed networks in modularity maximiza-

tion [122]. Nonetheless, there exists a spectrum of possible ways to define edges and their

properties. Future work is needed to understand the tradeoffs between different definitions

and to ultimately ground edge definition in biophysical properties of nervous systems.

Conclusion

Across many scientific disciplines from plant biology [123] to biogeodynamics [124] and the

study of biodiversity [125], scientists are faced with the challenge of bridging two or more

scales of investigation into the function of complex systems. For example, in evolutionary biol-

ogy, a key challenge is to bridge physical scales from protein sequences to fitness of organisms

and populations [126], while in the study of cancer progression a key challenge is to map geno-

type to phenotype [127]. Neuroscience is no exception. Ongoing efforts seek to bridge the gap

between the connectome and the transcriptome [128], between brains and social groups [129],

or between large-scale brain regions and small-scale cellular circuitry [130]. In each case, the

development of a formal understanding will depend upon the capacity to build mathematical

descriptions and theories across scales. One natural approach to this challenge is to use a for-

malism that is scale invariant, a characteristic that makes network science particularly appeal-

ing. Our work in this study is an example of considering tools and conceptual paradigms

previously exercised at the large-scale of brain regions, and exercising them at the level of cel-

lular circuitry. We look forward to future efforts explicitly measuring and examining the net-

work architecture of neural systems across both of these scales simultaneously in the same

animal, with the goal of better understanding and predicting behavior.

Methods

Ethics statement

All experimental procedures were performed in accordance with NIH guidelines and

approved by the IACUC at the University of Pennsylvania.

Animals

All experiments were performed with equal numbers of adult male and female mice (supplier—

Jackson Laboratories; age, 12-22 weeks; weight, 20-36 g; PV-Cre mice, strain: B6;129P2-

Pvalbtm1(cre)Arbr/J).

Two-photon microscopy and calcium imaging

Four mice were implanted with cranial windows over auditory cortex. Briefly, the mice were

anaesthetized with 1.5-3% isoflurane and a 3mm circular craniotomy was performed over

auditory cortex (stereotaxic coordinates) using a 3mm biopsy punch. An adeno-associated

virus (AAV) vector encoding the calcium indicator GCaMP6s (AAV1-SYN-GCAMP6s,

UPENN vector core) was injected for expression in layer 2/3 neurons in left A1 within the win-

dow (750 nl, 1.89 × 10-12 genome copies per ml) [131]. After injection a glass circular 3mm
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coverslip (size 0, Warner Instruments) was placed in the craniotomy and fixed in place using a

mix of Krazy glue and dental cement. A custom-made stainless steel head-plate (eMachine

Shop) was fixed to the skull using C&B Metabond dental cement (Parkell). All imaging ses-

sions were carried out inside a single-walled acoustic isolation booth (Industrial Acoustics) as

previously described. Mice were placed in the imaging setup, and the headpost was secured to

a custom base (eMachine Shop) serving to immobilize the head. Mice were gradually habitu-

ated to the apparatus over 3 days, 3-4 weeks after surgery.

Using two-photon microscopy (Ultima in vivo multiphoton microscope, Bruker) changes

in fluorescence of GCaMP6s in transfected neurons caused by fluctuations in calcium activity

were recorded in awake, head-fixed mice. We recorded from the same cells over many days in

layer 2/3 of auditory cortex, using blood vessel architecture, depth from the surface, and the

shape of cells to return to the same imaging site. Laser power at the brain surface was kept

below 30 mW. Chronic imaging of the same field of view across days was carried out for the

duration of the experiment.

Recordings were made at 512×512 pixels and 13-bit resolution at approximately 30 frames

per second. Spontaneous activity was recorded for 10 minutes in each session. Publicly avail-

able toolboxes [132] were used to register the resulting images, select regions of interest, esti-

mate neuropil contamination, and extract the changes in fluorescence from each cell. Upon

conclusion of the imaging sessions, brains were extracted following perfusion in 0.01M phos-

phate buffer pH 7.4 (PBS) and 4% paraformaldehyde (PFA), post-fixed in PFA overnight and

cryopreserved in 30% sucrose solution for 2 days prior to slicing. The location and spread of

GCaMP6s was confirmed through fluorescent imaging. These methods are consistent with the

recommendations of the American Veterinary Medical Association (AVMA) Guidelines on

Euthanasia.

Cell tracking over days

To identify ROIs from different imaging sessions that correspond to the same cell we per-

formed a multi-step routine: (1) The mean fluorescence images from each day were registered

by transforming the coordinates of landmarks present in both images in MATLAB (2017a)

using the fitgeotrans function. The resulting transformation was used to transform the ROIs

from the second imaging session to match the first; all sessions were aligned to the first imag-

ing session. (2) We calculated the distance between all pairs of centroids across the two ses-

sions. For each ROI from session 2, we computed the percentage overlap of the 10 cells with

the smallest centroid distances from session 1. Cells that had more than 1 ROI with higher

than 20% overlap were manually inspected; the ROI that matched the current cell was selected

from the overlapping ROIs or none were selected if it was unclear whether they were the same

cell. A good match was determined by considering the percent overlap and the shape of the

ROIs. All other cells were assigned the closest ROI as matching. (3) We manually inspected

any cells that had duplicate matching ROIs; again considering the shape and the percent over-

lap of matching ROIs, we selected the ROI that matched that cell, or we decided that none was

a good match. (4) To check for false positive matches, we manually inspected any matches

where the centroid distances were greater than the mean + 1 std of all the matches, and any

matches that had less than 30% ROI overlap; the match was deemed good or not depending on

the match criteria. Neurons that were not matched to any ROI were counted as different or

new and assigned a new cell number. This process was repeated for subsequent sessions, regis-

tering the imaging field to the first session and comparing the ROIs to the cumulative ROIs

from previous sessions. A final manual inspection of all the unique ROIs was performed after

all the imaging sessions were registered; ROIs that overlapped were excluded from the dataset
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since it was unclear whether they were the same or different cells. Examples of tracked cells

and aligned ROIs are shown in S2 Fig.

Network reconstruction

We estimated functional connectivity from fluorescence traces. Let xi(t) indicate the intensity

of fluorescence in cell i at time t. Next, we computed the cross-correlation of differenced fluo-

rescence traces for every pair of cells:

Wij ¼

P
tðxiðtÞ � miÞðxjðtÞ � mjÞ

sisj
; ð1Þ

where μi and σi are the mean and standard deviation of the differenced time series, respec-

tively. Here, “differenced activity” refers to a preprocessing strategy sometimes used to reduce

serial (auto) correlation in time series data and to make a time series approximately stationary

(i.e. constant mean over time) [133]. Given a time series of length T defined as x = [x1, . . ., xT],

the differenced time series has length T − 1 and is calculated as xdiff = [x2 − x1, . . ., xT − xT−1].

This difference transform is particularly appropriate when networks are constructed using

Pearson correlations, where time series are assumed to be stationary and to contain uncorre-

lated samples.

To reduce the likelihood that the observed correlations were driven by chance fluctuations,

we “jittered” the time series of cells by adding or subtracting < 1 second offsets to each cell

independently. We then computed jittered cross correlations, Wjitter
ij . We repeated this proce-

dure 1000 times. More specifically, the jittering procedure generates surrogate time series by

iterating cell by cell, selecting a random starting index, p, that occurs within the first 2 seconds

(the first 60 samples given the 1 second offset and 30 Hz sampling rate), and retaining the next

T − 2p − 1 samples. The resulting time series have length T − 2p. The jittered time series under-

went the same differencing procedure as the original time series.

We estimated for every pair of cells the probability that the jittering procedure would gener-

ate a correlation as strong as that which was observed empirically, and we made binary con-

nections between those cells with p< 0.05. This procedure resulted in a sparse matrix,

A 2 RN�N with elements Aij 2 [0, 1]. We note that the fully-weighted and signed matrices were

used in the analysis of the day-to-day network similarity. The thresholded, binary, and sparse

matrices were used for community and core-periphery detection due to the complexity of the

algorithms.

Module detection

We used modularity maximization to detect network modules based on connectivity data [55].

This method aims to divide network nodes (cells) into modules whose internal density of con-

nections is maximally greater than what would be expected under a null model. This intuition

is formalized by the modularity quality function [134]:

QðgÞ ¼
X

ij

Aij � g
kikj
2m

� �

dðgi; gjÞ: ð2Þ

In this equation, ki = ∑j Aij is the degree of node i and 2m = ∑i ki is the total number of con-

nections in the network. The term
kikj
2m gives the expected number of connections between node

i and node j given the null model in which each node’s degree is preserved but connections are

formed at random. The resolution parameter, γ, scales the relative contribution of the null
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model. The module assignment of node i is encoded as gi and δ(gi, gj) is the Kronecker delta,

whose value is equal to unity when gi = gj and is zero otherwise.

In this manuscript, we used two variants of modularity maximization. First, we studied the

network community structure for each recording session independently. For this analysis, we

combined modularity maximization with a newly-developed multi-resolution technique that

divides the network into communities of different sizes (scales) that are related to one another

hierarchically [135]. This procedure allows us to examine community structure across a range

of scales, from large communities to smaller communities that might support more specialized

information processing.

Additionally, we used a multi-layer variant of modularity maximization that makes it possi-

ble to track the evolution, formation, and dissolution of communities across recording sessions

[66]. In this procedure, the standard modularity maximization equation is modified to read:

Qðg;oÞ ¼
X

ijuv

½ðAiju � gkiukjuÞ�dðgiu; gjuÞ þ dði; jÞ � o�dðgiu; gjvÞ: ð3Þ

Here, the subscript s denotes network layers, u 2 {1, . . ., T}. That is, each network layer corre-

sponds to connectivity patterns estimated on a different day. So Aiju represents the presence or

absence and weight of the connection between node i and node j in layer u. Similarly, kiu = ∑j
Aiju is the degree of node i in layer u and giu is the community to which node i is assigned in

layer u. Unique to the multi-layer variant of modularity maximization is the inter-layer cou-
pling parameter ω, which links node i to itself across layers. From the perspective of maximiz-

ing Q, non-zero values of ω make it advantageous to group node i into the same community

across layers. When ω is small, the advantage is correspondingly small, and the detected com-

munities emphasize the unique community structure of layers. On the other hand, when ω is

large, the detected communities are consistent across layers and emphasize shared features of

community structure.

Here, we used a recently-developed procedure to obtain estimates of community structure

with the values of {γ, ω} sampled from a restricted parameter space [68]. This procedure

involved first estimating the boundaries of a restricted parameter space wherein any {γ, ω} pair

would result in community structure where the number of communities is> 1 and< N × T
(where T is the total number of layers; T = 6, in this case), and where community structure is

neither uniform across layers (flexibility of exactly 0) nor is it maximally dissimilar (flexibility

of exactly 1). See [24] for more details on how these boundaries were estimated. We then sam-

pled 10000 {γ, ω} pairs from within this parameter space and for each sample we maximized

the corresponding Q(γ, ω). All subsequent analyses were carried out on these detected

communities.

The principle advantage of the multi-layer formulation is that it estimates communities for

all layers simultaneously and preserves nodes’ community labels across layers. This advantage

makes it possible to directly compare the community assignment of a given node in layer u
and in layer v 6¼ u, and to identify nodes whose community assignments are flexible (varying

from one layer to another) or inflexible (remaining in the same community across layers). We

can quantify this intuition using the network measure flexibility [67, 70]:

fi ¼ 1 �
1

T � 1

XT� 1

u¼1

dðgi;u; gi; uþ1Þ: ð4Þ

Intuitively, flexibility counts the fraction of times that nodes’ community assignments in layers

u and u + 1 differ. Nodes that differ more frequently have flexibility values closer to 1, while
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nodes that differ less frequently have flexibility values closer to 0. Here, we used the flexibility

measure as an index of change in network community structure across recording sessions.

Co-assignment probability

Based on the 10,000 partitions generated using single-layer modularity maximization, we were

able to estimate the probability that nodes i and j were assigned to the same module. Let cih
denote the community assignment of node i in partition h 2 1, . . ., 10000. The co-assignment

probability of nodes i and j was calculated as:

Cij ¼
1

10000

X10000

h¼1

XN

i¼1j;¼1

dðcih; cjhÞ: ð5Þ

The value of Cij ranges from 0 to 1, indicating that nodes i and j were never assigned to the

same module or were always assigned to the same module, respectively.

Core-periphery detection

Separately, we also characterized the stability of network organization across recording ses-

sions by computing a temporal core and periphery. In this context, a core refers to a group of

nodes that are densely internally connected and to the periphery, which is weakly internally

connected [103]. To identify temporal core-periphery structure, we first generated a connec-

tion consistency matrix, whose element Gij = ∑u Aiju represented the fraction of layers (record-

ing sessions) in which a network connection was present. In this matrix, a core refers to a

group of nodes whose connections are maintained across time, while the periphery is a set of

nodes whose connections are more variable.

We used a variant of a common core-periphery definition in which the transition from

core to periphery varies smoothly (non-binary). We begin by defining the N × 1 vector Ci of

non-negative elements [74]. Given this vector, we then defined the matrix Cij = CiCj subject to

the constraint that ∑ij Cij = 1. The values in the vector C are permutations of the vector:

C�m ¼
1

1þ expð� ðm � bNÞ � tanðpa=2ÞÞ
: ð6Þ

The coreness of each node is the permutation of C�m that maximizes the core quality function:

R ¼
X

ij

GijCiCj: ð7Þ

This method introduces two free parameters, α 2 [0, 1] and β 2 [0, 1]. The value of α deter-

mines the sharpness of the core-periphery boundary. With α = 1, the transition is binary while

the transition with α = 0 is maximally fuzzy. Similarly, the value of β determines the size of the

core; as β ranges from 0 to 1, the size of the core varies from N to 0. In our application, we per-

formed a grid search of 31 linearly-spaced values of α and β, using a simulated annealing algo-

rithm to maximize R (with 10 restarts).

Supporting information

S1 Fig. Module similarity at different hierarchical levels.

(TIF)

S2 Fig. Examples of cell tracking over days.

(TIF)
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