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In everyday acoustic environments, we navigate through a

maze of sounds that possess a complex spectrotemporal

structure, spanning many frequencies and exhibiting temporal

modulations that differ within frequency bands. Our auditory

system needs to efficiently encode the same sounds in a variety

of different contexts, while preserving the ability to separate

complex sounds within an acoustic scene. Recent work in

auditory neuroscience has made substantial progress in

studying how sounds are represented in the auditory system

under different contexts, demonstrating that auditory

processing of seemingly simple acoustic features, such as

frequency and time, is highly dependent on co-occurring

acoustic and behavioral stimuli. Through a combination of

electrophysiological recordings, computational analysis

and behavioral techniques, recent research identified the

interactions between external spectral and temporal context

of stimuli, as well as the internal behavioral state.

Address

Department of Otorhinolaryngology: HNS, Department of Neuroscience,

Psychology Graduate Group, Computational Neuroscience Initiative,

University of Pennsylvania, Philadelphia, PA, United States

Corresponding author: Geffen, MN (mgeffen@med.upenn.edu)

Current Opinion in Neurobiology 2018, 49:8–15

This review comes from a themed issue on Neurobiology of behavior

Edited by Kay Tye and Nao Uchida

For a complete overview see the Issue and the Editorial

Available online 7th November 2017

https://doi.org/10.1016/j.conb.2017.10.012

0959-4388/ã 2017 Published by Elsevier Ltd.

At the first stage in the auditory processing cascade, the

cochlea decomposes the incoming sound waveform into

electrical signals for distinct frequency bands, creating a

frequency-delimited organization that persists through-

out the central auditory processing centers. The inferior

colliculus, the auditory thalamus and the auditory cortex

all exhibit tonotopic organization through a systematic

neuronal best frequency gradient across space. Therefore,

tonotopy has been considered a fundamental feature of

auditory processing and, historically, auditory neuroscien-

tists used pure frequency tones to systematically charac-

terize the response properties of the auditory system.
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However, while pure tones are useful for determining

the tuning properties of individual cells and the tonotopic

arrangement of different brain regions, they ultimately do

not capture the complex spectral profile of many natural

sounds. Natural acoustic stimuli like speech, conspecific

vocalizations, and environmental sounds, are comprised

of signals with power across multiple frequency bands.

Encoding complicated spectral profiles is behaviorally

important, as these types of sounds provide cues for

identifying different speakers and call types and for sound

localization. However, how a complex sound is encoded is

not immediately evident by looking at the responses to

individual frequency components: rather, responses to

distinct spectral components of sounds interact with each

other in frequency and time. From moment to moment, a

neuron’s response does not necessarily reflect only the

frequency band it is best tuned to, but also depends on

nonlinear integration of stimulus power across the spec-

tral and temporal domains. Furthermore, behavioral state

or task engagement can modify this representation. Here,

we review recent investigations on how spectral, temporal

and behavioral contexts affect sound representation in the

auditory cortex (Figure 1).

Modulation of auditory processing by spectral
context
Indeed, in the central auditory pathway, neural response

properties to spectrally complicated stimuli are not well

predicted by their tuning to pure tones. In the periphery,

auditory nerve fibers typically transmit a linear, narrow-

band representation of pure tone stimuli that is deter-

mined by their frequency tuning [1]. However, when

presented with pairs of pure tones, auditory nerve fiber

responses at best frequency are often suppressed by the

presence of a second tone, a well-studied phenomenon

called two-tone suppression (Figures 1 and 2; for review,

see [2]), which arises from nonlinearities in the mechanics

of the basilar membrane of the cochlea [3–5]. Many

cortical neurons also nonlinearly integrate spectral com-

ponents, showing multi-peaked tuning [6–9], two-tone

suppression and facilitation (Figure 2a) [10–12], or com-

bination sensitivity [13,14] when presented with sounds

composed of multiple frequencies. This selectivity for

complex spectral stimuli is thought to arise from a com-

bination of excitation and lateral inhibition, as belied by

the suppressive effects of multiband stimuli on single-

peaked neuronal responses [10,15]. Thus, rather than

combining responses to inputs at different frequencies

in an additive fashion, the auditory system facilitates non-

linear interactions across spectral bands.
www.sciencedirect.com
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Figure 1
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Schematic of auditory context effects. Spectral context. The effects of spectral energy in near and distant frequency bands on characteristic

frequency responses, as demonstrated with two-tone suppression and harmonic facilitation. Temporal context. The effects of preceding tones on

a probe stimulus, as demonstrated by forward suppression and related to SSA. Spectrotemporal context. The joint effects of energy distributed

across frequency and time, often resulting in adaptation of nonlinear response properties to suit persistent environmental statistics. Behavioral

context. The effects of reward contingency on auditory responses.
Sensitivity to spectral context is useful for encoding

sounds composed of several distinct frequencies, a feature

common to many mammalian vocalizations [12,13]. Many

communication sounds contain harmonic components, a

broadband acoustic feature that is highly perceptible by

many mammalian species [16–18]. Indeed, harmonic

features are perceptually useful, and can be used to

discriminate between different sound sources or speakers

[19] or to hear vocalizations in noisy environments [20],

indicating that harmonicity is a prominent acoustic fea-

ture for auditory processing. In auditory cortex, single-

peaked and multi-peaked neurons are often suppressed or

facilitated by harmonically spaced tone pairs (Figure 2a)

[12] and can be selective for higher order harmonic

sounds [21–23] demonstrating that auditory cortex is

highly sensitive to the harmonic content of natural sti-

muli, possibly through a harmonic arrangement of alter-

nating excitatory and inhibitory inputs [23]. These stud-

ies demonstrate that spectral processing in the auditory

system combines a linear, tonotopic representation of

frequency with a nonlinear representation, which creates

sensitivity to features of the spectral context outside of a

neuron’s best frequency.

Modulation of auditory processing by
temporal context
Just as the spectral context outside of the best frequency

is integrated in cortical neurons, the temporal history of an

acoustic waveform also impacts neural responses to pro-

ceeding stimuli. Sensitivity to temporal context is impor-

tant for identifying auditory objects, allowing sequences

of auditory stimuli to be perceptually grouped or
www.sciencedirect.com 
separated based on their temporal properties [24,25] or

for detecting novel or rare sounds by decreasing respon-

sivity to redundant sounds [26,27].

In the auditory cortex, responses to a probe tone are

suppressed by a preceding masking tone, a phenomenon

known as forward suppression (Figure 2b) [11,28–31].

The magnitude of forward suppression depends on the

frequency and intensity of the masker, creating a sup-

pressive area that matches the frequency response area

(FRA) of the neuron, and decays at large delays between

the probe and masker, approximately 250 ms after masker

onset [11,28,29]. The suppressive effect of the masker is

released with increasing probe intensities, suggesting a

competitive interaction between excitatory responses to

the probe, and delayed inhibitory responses to the masker

(Figure 2b) [30]. Whole-cell recordings show that inhibi-

tory conductances elicited from the masker last only 50–

100 ms, indicating the involvement GABA-mediated syn-

aptic inhibition at short timescales, but also that long-

term synaptic depression may underlie suppression

observed at longer delays [32]. Notably, there is consid-

erable diversity in forward masking in awake mice, with

mixtures of suppression and facilitation by the masker,

and nonlinear relationships between responses to the

masker and the probe, further implicating synaptic inhi-

bition mediated by cortical interneurons as a potential

mechanism for temporal context sensitivity [31].

Prolonged stimulus history also affects neural sensitivity.

Stimulus specific adaptation (SSA) is one such phenome-

non, in which neurons reduce their response to a tone
Current Opinion in Neurobiology 2018, 49:8–15
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Figure 2
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Examples of spectral and temporal context. (a) Two-tone suppression. Top: schematic of stimuli used in two-tone suppression experiments,

consisting of a reference tone presented at characteristic frequency (CF; S1, black bar) presented alone and in the presence of a competing tone

(S2, gray bars). Bottom: Change in firing rate of an example neuron between presentations of S1 alone (S1: 1.47 kHz, 50 dB SPL) relative to S1

presented with S2 stimuli of varying frequencies (S2: 0.12–5.88 kHz, 70 dB SPL). Note suppressive effects at nearby frequencies, but facilitative

effects near the first harmonic (3 kHz). Dotted and dashed lines represent the response to S1 alone, and the characteristic frequency, respectively.

Figure adapted from Kadia and Wang, 2003 [12]. (b) Forward suppression. Top: schematic of stimuli used in forward suppression experiments,

consisting of masker tones of varying frequency (gray bars) followed by a probe tone typically presented at CF (black bar) at variable delays.

Bottom: Frequency response areas (FRAs) of an example neuron in response to the masker (left) and the probe (right) as a function of masker

frequency relative to CF and masker level. Note the suppression of spiking in response to the probe when preceded by masker tones that elicited

strong responses, such that forward suppression roughly resembles the FRA of the neuron. Figure adapted from Scholl et al., 2008 [30].
frequently repeated over several seconds, but do not

suppress their response to a rarely presented tone of a

different frequency [27,33–37]. SSA typically occurs over

the course of several seconds [35–37] and can be elicited

by tones whose frequency difference is an order of

magnitude smaller than typical cortical and auditory

nerve tuning widths [33,36]. Curiously, this phenomenon

results in frequency hyperacuity in single neurons which

matches the psychophysical acuity of untrained humans

in a frequency discrimination task [38]. Converging evi-

dence suggests that SSA is mediated through a combina-

tion of feedforward synaptic depression and intra-cortical

inhibition [27,39]. Parvalbumin-positive (PV) and

somatostatin-positive (SOM) interneurons differentially

contribute to SSA, with PVs providing non-specific inhi-

bition to the frequent and rare tones, while SOMs
Current Opinion in Neurobiology 2018, 49:8–15 
selectively inhibit frequent tones in a manner that

increases over time [27]. Taken together, these findings

outline a key role for interneuron-mediated synaptic

inhibition in adaption to temporal context, providing a

neural mechanism by which sound sequences and tem-

poral events are encoded in auditory cortex.

Spectrotemporal context: adapting to noisy
environments
So far in this review, spectral and temporal context have

been treated separately, although there is a clear interac-

tion between frequency and time in forward suppression

[11,28–31]. This interaction is well documented, and can

be made explicitly clear by quantifying spectrotemporal

receptive fields (STRFs), in which neural responses are

characterized by their sensitivity to sound intensity over
www.sciencedirect.com
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both time and frequency [40,41]. Notably, incorporating

local temporal and spectral stimulus context to an STRF-

based model of neuronal responses to sounds not only

improves predictions of activity, but suggests that context-

specific changes in gain may underlie previously observed

context effects such as two-tone or forward suppression

[42,43��]. This sensitivity to the local effects of frequency

and time likely facilitates responses to combinations of

spectrotemporal features [13,14]. Indeed, in nearly all

natural soundscapes, the auditory background contains

high order temporal and spectral characteristics [44,45].

To hear in these complex natural environments, it is

necessary to encode the spectrotemporal statistics of the

acoustic context to separate auditory streams, or, similarly,

hear in the presence of background noise.

As discussed previously, stimulus-specific adaptation

allows auditory cortex to reduce sensitivity to redundant

stimuli [27,33,36]. Adaptive mechanisms are not limited

to pure frequency, but can also account for broadband

stimulus statistics over time, including stimulus volume
Figure 3
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[46�] and contrast [47�,48]. When presented with stimuli

distributed at different volumes, neurons in the inferior

colliculus (IC) adjust their rate-level functions to maxi-

mize sensitivity to sounds at the presented volume. On a

population level, this is reflected by shifts in the mutual

information contained in the rate-level responses toward

intensities that are most commonly presented [46�]. In

auditory cortex, neurons adapt not only to stimulus level,

but also the dynamic range, or contrast, of the stimulus

spectra over time (Figure 3a). To do this, neurons adjust

the dynamic range of their response gain to nearly match

the dynamic range of the stimulus (Figure 3b) [47�,48].
Notably, gain adaptation accounts not only for contrast

over spectral space, but contrast over time, in broadband

stimuli with varied temporal correlations (Figure 3c,d)

[49��], creating invariance to changes in temporal modu-

lation rate, commonly seen in speech and other natural

sounds. Through these adaptive mechanisms, the audi-

tory system adjusts nonlinearities in its response proper-

ties to account for consistent spectrotemporal statistics in

broadband stimuli.
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Gain adaptation is useful in generating responses that are

invariant to persistent statistics of auditory environments,

a processing feature which may underlie our ability to

hear in the presence of noise [48,50,51]. In the anesthe-

tized ferret, responses to speech in noise become increas-

ingly noise invariant from IC to AC, a phenomenon that

correlates with estimates of level and contrast adaptation

in each region [48]. Further work explicitly modeling

these adaptive mechanisms in terms of subtractive syn-

aptic depression and divisive normalization significantly

improve AC response predictions and stimulus recon-

structions from population responses to noise-corrupted

stimuli compared to static LN models [50,52,53]. These

results indicate that, in environments with persistent

background statistics, neural adaptation reduces

responses to the background to optimally encode stimuli

with different spectrotemporal profiles.

It is worth noting that many natural environments, such

as a cocktail party or loud crowd, have noise back-

grounds that fluctuate, or are a superposition of stimuli

with statistics similar to the signal of interest. For

complex sounds, such as vocalizations, sensory repre-

sentations are modified between primary and secondary

auditory areas, generating invariance to acoustic distor-

tions of these complex signals [54�,55]. Similarly, in

high-level human and avian auditory areas, responses

to vocalizations embedded in multi-speaker choruses

are background invariant, and strongly reflect behavioral

detection of the attended speaker [56,57�]. These mix-

tures of complex background sounds often contain

coherently modulated power across different frequency

bands [44]. This general property of auditory scenes

may underlie co-modulation masking release (CMR), a

psychophysical phenomenon in which co-modulated

background noise facilitates the detection of embedded

signals [58]. When presented with tones in co-modu-

lated noise, auditory cortex strongly locks to the noise

modulation envelope, but increases sensitivity to

embedded tones by suppressing noise-locking during

the tone, providing a potential neural substrate for

CMR, and behavioral detection of sounds in complex

environments [44,59,60].

Modulation of auditory processing by
behavioral context
So far, we discussed how external stimulus context affects

auditory coding; however, what we hear in an acoustic

scene depends not only on the spectrotemporal properties

of the sound reaching our ears, but also on how our

movements, attentional state and behavioral goals relate

to those auditory inputs. If optimal, the auditory system

would generate stimulus representations that facilitate

adaptive behaviors; as such, how coding of acoustic sti-

muli is modulated by behavior is of fundamental impor-

tance in our understanding of auditory processing.
Current Opinion in Neurobiology 2018, 49:8–15 
The auditory cortex is highly sensitive to behavioral state,

showing suppression mediated by PV interneurons during

locomotion [61,62��], an effect which is likely involved in

auditory-motor learning [63] and the suppression of self-

generated sounds [64,65]. During auditory tasks, inter-

mediate, but not low or high arousal levels (as assayed by

pupillometry, locomotion and hippocampal activity),

improves the signal-to-noise ratio of sound-evoked

responses [66], providing a neural substrate for the

inverted-U relationship between arousal and task perfor-

mance [67]. These findings suggest that auditory

responses rely not only on the external sounds reaching

the ear, but also on the behavioral and internal state of the

subject.

Recent findings demonstrate that populations of neurons

in auditory cortex maintain relatively stable receptive

field parameters in response to a wide array of acoustic

stimuli [68]. However, during active engagement in a

behavioral task, cortical receptive fields change to maxi-

mize behavioral outcomes by improving encoding of

relevant stimulus features. A popular paradigm to assay

the neural effects of task engagement is to record stimu-

lus responses during active (rewarded) and passive (non-

rewarded or randomly rewarded) behavioral contexts.

Using a trained tone detection task, Fritz and colleagues

manipulated reward contingencies between passive and

active behavioral contexts while recording from single

units in auditory cortex. Estimating STRFs in each

context revealed plasticity in the cortical representation

of the target stimulus, such that responses to the target

frequency were greatly elevated in the active context

[69] while responses to non-target stimuli are depressed

[70]. These behaviorally driven changes in auditory

coding also generalize to more complex sounds, such

as tone sequences [71] and distorted speech [72]. Nota-

bly, these effects depend on the reward contingency,

with enhanced responses to targets requiring behavioral

avoidance, but suppressed responses to targets requiring

approach behaviors [71,73��], demonstrating consider-

able cortical adaptability to task demands while conserv-

ing neural discrimination of task-relevant frequency

information.

While reward contingencies have a clear effect on tuning

during frequency discrimination tasks, it was not clear

whether these coding properties would hold for more

complex stimuli. Using amplitude modulation (AM) dis-

crimination tasks, Niwa and colleagues found that neural

responses in AC increase both their firing rate and phase-

locking to AM stimuli during the active behavioral con-

text, thus increasing the amount of information about the

attended amplitude modulations. While changes in rate

and phase-locking are both correlated with behavioral

performance, changes in rate are more affected by task

engagement and are more correlated with behavior,

implicating a multiplexed temporal-code and rate-code
www.sciencedirect.com
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Figure 4
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STRF plasticity during behavior. (a) Approach task. During behavior,

animals received rewards when licking during a target tone. Left:

Population averaged STRF changes between active and passive

conditions. STRFs were aligned to the frequency of the target tone.

Blue indicates a suppression relative to the passive condition, while

red indicates excitation. Note that during the approach task, there is a

prominent suppression at the target frequency. Right: Cell counts

indicating the population level STRF change at the target frequency.

Blue bars indicate suppressed responses while red bars indicate

enhanced responses. Filled bars indicate units showing significant

modulation by behavioral context. Arrows denote the median change

in significant units. (b) Avoidance task. During behavior, animals

received rewards when licking during reference noise bursts, but not

during the target stimulus. Plots as in (a). Note that during the

approach task, there is significant suppression at the target, while

during the avoidance task, there is significant enhancement at the

target. Figures adapted from David et al., 2012 [73��].
that is dominated by firing rate changes during behavior

(Figure 4) [74,75]. On a population level, neurons with

similar AM tuning decrease their noise correlations during

active engagement, while noise correlations in neurons

with dissimilar AM tuning are unaffected, suggesting that

AC selectively modulates population variability to maxi-

mize sensory discrimination [76�]. Taken together, these

results demonstrate that auditory cortex is highly plastic,

rapidly adjusting its single-unit and population response

properties to optimally encode stimulus features that are

relevant to the current behavioral task.

Conclusion
Natural acoustic scenes are highly complex, consisting of

stimuli with complex spectral and temporal profiles that

can occur in noisy environments and have different
www.sciencedirect.com 
behavioral meanings. To handle this considerable com-

plexity, our auditory system evolved sensitivity to spec-

trotemporal and behavioral context. Beyond a simple

spectral representation, the auditory system demon-

strates nonlinear sensitivity to temporal and spectral

context, often employing network-level mechanisms,

such as cross-band and temporally adaptive inhibition,

to modulate stimulus responses across time and fre-

quency. Notably, as neuroscience employs more experi-

ments in awake and behaving animals, it is important to

consider the effects of behavioral context; arousal state

and reward contingency have substantial effects on sen-

sory responses, revealing highly plastic stimulus repre-

sentations that optimize sensory discrimination depend-

ing on the task demands. On a circuit level, it is not yet

known how the auditory system modulates responses to

sensory and behavioral contexts, providing a rich avenue

for future investigation.
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